Synlett 2017; 28(12): 1427-1431
DOI: 10.1055/s-0036-1588771
letter
© Georg Thieme Verlag Stuttgart · New York

Homoconjugated and Spiro Push–Pull Systems: Cycloadditions of Naphtho- and Anthradiquinones with Electron-Rich Alkynes

Cagatay Dengiz
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA   eMail: tswager@mit.edu
,
Timothy M. Swager*
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA   eMail: tswager@mit.edu
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 31. Januar 2017

Accepted after revision: 08. März 2017

Publikationsdatum:
11. April 2017 (online)


Abstract

We report the synthesis and characterization of three new classes of push–pull chromophores using [2+2]-cycloaddition reactions of electron-rich alkynes and electron-poor alkenes. Previous investigations have focused on the reactions of cyano-substituted electron acceptors. This study demonstrates that cyano-free electron acceptors, naphtho- and anthradiquinones, can also be used to access extended push–pull systems. The effects of the structural changes on the spectroscopic and electronic properties were investigated by UV/vis spectroscopy. Structures were confirmed by X-ray and NMR analysis in solution.

Supporting Information

 
  • References and Notes

    • 1a Gompper R. Wagner H.-U. Angew. Chem. Int. Ed. Engl. 1998; 27: 1437
    • 1b Roncali J. Leriche P. Cravino A. Adv. Mater. 2007; 19: 2045
    • 1c Kato S.-i. Diederich F. Chem. Commun. 2010; 46: 1994
  • 2 Beels MT. Fleischman MS. Biaggio I. Breiten B. Jordan M. Diederich F. Opt. Mater. Express 2012; 2: 294
  • 3 Kivala M. Diederich F. Acc. Chem. Res. 2009; 42: 235
  • 4 Kolb HC. Finn MG. Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
    • 5a Bruce MI. Rodgers JR. Snow MR. Swincer AG. J. Chem. Soc., Chem. Commun. 1981; 271
    • 5b Shoji T. Ito S. Okujima T. Morita N. Eur. J. Org. Chem. 2011; 5134
    • 5c Leliége A. Blanchard P. Rousseau T. Roncali J. Org. Lett. 2011; 13: 3098
    • 5d Finke AD. Dumele O. Zalibera M. Confortin D. Cias P. Jayamurugan G. Gisselbrecht J. -P. Boudon C. Schweizer WB. Gescheidt G. Diederich F. J. Am. Chem. Soc. 2012; 134: 18139
    • 5e Shoji T. Maruyama M. Shimomura E. Maruyama A. Ito S. Okujima T. Toyota K. Morita N. J. Org. Chem. 2013; 78: 12513
    • 5f Misra R. Gautam P. Mobin SM. J. Org. Chem. 2013; 78: 12440
    • 5g Dengiz C. Breiten B. Gisselbrecht J.-P. Boudon C. Trapp N. Schweizer WB. Diederich F. J. Org. Chem. 2015; 80: 882
    • 5h Dhokale B. Jadhav T. Mobin SM. Misra R. Dalton Trans. 2016; 45: 1476
    • 5i Gautam P. Sharma R. Misra R. Keshtov ML. Kuklin SA. Sharma GD. Chem. Sci. 2017; 8: 2017
    • 6a Kato S.-i. Bells MT. R. La Porta P. Schweizer WB. Boudon C. Gisselbrecht J.-P. Biaggio I. Diederich F. Angew. Chem. Int. Ed. 2010; 49: 6207
    • 6b Dengiz C. Dumele O. Kato S.-i. Zalibera M. Cias P. Schweizer WB. Boudon C. Gisselbrecht J.-P. Gescheidt G. Diederich F. Chem. Eur. J. 2014; 20: 1279
    • 7a Trofimov BA. Sobenina LN. Stepanova ZV. Ushakov IA. Sinegovskaya LM. Vakul’skaya TI. Mikhaleva AI. Synthesis 2010; 470
    • 7b Trofimov BA. Sobenina LN. Stepanova ZV. Ushakov IA. Mikhaleva AI. Tomilin DN. Kazheva ON. Alexandrov GG. Chekhlov AN. Dyachenko OA. Tetrahedron Lett. 2010; 51: 5028
    • 7c Sobenina LN. Stepanova ZV. Ushakov IA. Mikhaleva AI. Tomilin DN. Kazheva ON. Alexandrov GG. Dyachenko OA. Trofimov BA. Tetrahedron 2011; 67: 4832
    • 8a Shoji T. Higashi J. Ito S. Yasunami M. Morita N. Heterocycles 2011; 83: 2271
    • 8b Shoji T. Maruyama M. Shimomura E. Maruyama A. Ito S. Yasunami M. Higashi J. Toyota K. Morita N. Heterocycles 2014; 88: 319
  • 9 Reekie TA. Donckele EJ. Ruhlmann L. Boudon C. Trapp N. Diederich F. Eur. J. Org. Chem. 2015; 7264
  • 10 Dengiz C. Prange C. Gawel P. Trapp N. Ruhlmann L. Boudon C. Diederich F. Tetrahedron 2016; 72: 1213
    • 11a Yoshino S. Hayakawa K. Kanematsu K. J. Org. Chem. 1981; 46: 3841
    • 11b Hayakawa K. Aso M. Kanematsu K. J. Org. Chem. 1985; 50: 2036
    • 12a Elangovan A. Chen T.-Y. Chen C.-Y. Ho T.-I. Chem. Commun. 2003; 17: 2146
    • 12b Huang W. Chen H. Macromolecules 2013; 46: 2032
    • 13a Dehu C. Meyers F. Brédas JL. J. Am. Chem. Soc. 1993; 115: 6198
    • 13b Beckmann J. Dakternieks D. Duthie A. Mitchell C. Schürmann M. Aust. J. Chem. 2005; 58: 119
    • 13c Jayamurugan G. Dumele O. Gisselbrecht J.-P. Boudon C. Schweizer WB. Bernet B. Diederich F. J. Am. Chem. Soc. 2013; 135: 3599
  • 14 Weringa WD. Janssen MJ. Recl. Trav. Chim. Pays-Bas 1968; 87: 1372
  • 15 Frisch MJ. Trucks GW. Schlegel HB. Scuseria GE. Robb MA. Cheeseman JR. Montgomery JA. Jr. Vreven T. Kudin KN. Burant JC. Millam JM. Iyengar SS. Tomasi J. Barone V. Mennucci B. Cossi M. Scalmani G. Rega N. Petersson GA. Nakatsuji H. Hada M. Ehara M. Toyota K. Fukuda R. Hasegawa J. Ishida M. Nakajima T. Honda Y. Kitao O. Nakai H. Klene M. Li X. Knox JE. Hratchian HP. Cross JB. Bakken V. Adamo C. Jaramillo J. Gomperts R. Stratmann RE. Yazyev O. Austin AJ. Cammi R. Pomelli C. Ochterski JW. Ayala PY. Morokuma K. Voth GA. Salvador P. Dannenberg JJ. Zakrzewski VG. Dapprich S. Daniels AD. Strain MC. Farkas O. Malick DK. Rabuck AD. Raghavachari K. Foresman JB. Ortiz JV. Cui Q. Baboul AG. Clifford S. Cioslowski J. Stefanov BB. Liu G. Liashenko A. Piskorz P. Komaromi I. Martin RL. Fox DJ. Keith T. Al-Laham MA. Peng CY. Nanayakkara A. Challacombe M. Gill PM. W. Johnson B. Chen W. Wong MW. Gonzalez C. Pople JA. Gaussian 03, Revision E.01. Gaussian, Inc; Wallingford CT: 2004
  • 16 General Procedure for the Synthesis of Homoconjugated and Spiro Push–Pull Systems Diquinone (1 equiv) was added under Ar to a solution of electron-rich alkyne (1 equiv) in DCE (5 mL). The mixture was stirred at 25 °C for 3 h and the solvent removed under reduced pressure. The residue was purified by FCC (SiO2, CHCl3) to give homoconjugated and spirocyclic products. Compound 3a: Naphthazarin (1, 100 mg, 0.532 mmol) was added under Ar to a solution of electron-rich alkyne 2a (77 mg, 0.532 mmol) in DCE (5 mL). The mixture was stirred at 25 °C for 3 h and the solvent removed under reduced pressure. The residue was purified by flash column chromatography (FCC; SiO2, CHCl3) to give homoconjugated chromophore 3a (62 mg, 35%) as a dark-orange solid. Rf = 0.13 (SiO2; CHCl3); mp 215–218 °C. 1H NMR (400 MHz, CDCl3, 298 K): δ = 2.99 (s, 6 H), 6.43 (s, 1 H), 6.65 (quasi d, J = 9.0 Hz, 2 H), 6.80 (s, 4 H), 7.63 (quasi d, J = 9.0 Hz, 2 H) ppm. 13C NMR (100 MHz, CDCl3, 298 K): δ = 189.0, 187.6, 151.5, 150.7, 140.3, 139.7, 128.4, 123.7, 117.3, 111.6, 68.7, 64.6, 40.2 ppm. UV/vis (CH2Cl2): λmax (ε) = 453 (2400), 323 nm (21800 M–1 cm–1). ESI-HRMS: m/z calcd for C20H15NO4 +: 334.1074; found: 334.1076 [M + H]+. Compounds 5a and 6a: Quinizarin (4, 50 mg, 0.210 mmol) was added under Ar to a solution of electron-rich alkyne 2a (31 mg, 0.210 mmol) in DCE (5 mL). The mixture was stirred at 25 °C for 3 h and the solvent removed under reduced pressure. The residue was purified by FCC (SiO2, CHCl3) to give homoconjugated chromophore 5a (31 mg, 39%) and 6a (4 mg, 5%) as a dark-orange solids. Compound 5a: Rf = 0.13 (SiO2; CHCl3); mp 125–130 °C. 1H NMR (400 MHz, CDCl3, 298 K): δ = 2.99 (s, 6 H), 6.53 (s, 1 H), 6.66 (quasi d, J = 8.9 Hz, 2 H), 6.83 (s, 2 H), 7.67 (quasi d, J = 8.9 Hz, 2 H), 7.73–7.80 (m, 2 H), 8.03–8.12 ppm (m, 2 H) ppm. 13C NMR (100 MHz, CDCl3, 298 K): δ = 189.9, 188.5, 188.4, 187.3, 151.4, 150.9, 140.7, 139.9, 135.04, 134.96, 134.7, 134.2, 128.41, 128.39, 128.1, 124.2, 117.7, 111.6, 69.5, 65.5, 40.2 ppm. UV/vis (CH2Cl2): λmax (ε) = 411 (3400), 318 nm (22200 M–1 cm–1). ESI-HRMS: m/z calcd for C24H17NO4 +: 384.1230; found: 384.1220 [M + H]+. Compound 6a: Rf = 0.26 (SiO2; CHCl3); mp 144–147 °C. 1H NMR (400 MHz, CDCl3, 298 K): δ = 3.00 (s, 6 H), 5.79 (d, J = 10.0 Hz, 1 H), 6.17 (s, 1 H), 6.68 (quasi d, J = 9.0 Hz, 2 H), 7.50 (quasi d, J = 9.0 Hz, 2 H), 7.53 (d, J = 10.0 Hz, 1 H), 7.93 (dd, J = 5.7, 3.1 Hz, 2 H), 8.13 (dd, J = 5.7, 3.1 Hz, 2 H) ppm. 13C NMR (100 MHz, CDCl3, 298 K): δ = 193.3 (2 C=O) 159.9, 150.8, 147.5, 144.4, 136.2, 134.7, 126.9, 126.0, 125.1, 118.6, 117.6, 112.2, 103.0, 73.2, 40.4 ppm. UV/vis (CH2Cl2): λmax (ε) = 480 (12500), 323 nm (14300 M–1 cm–1). ESI-HRMS: m/z calcd for C24H17NO4 +: 384.1230; found: 384.1227 [M + H]+.