Synlett 2017; 28(11): 1358-1362
DOI: 10.1055/s-0036-1588758
letter
© Georg Thieme Verlag Stuttgart · New York

Thioether-Catalysed Tandem Synthesis of Furans and Cyclic Ethers or Lactones

Verena Klaus
School of Chemistry, Joseph Black Building, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK   Email: stephen.clark@glasgow.ac.uk
,
J. Stephen Clark*
School of Chemistry, Joseph Black Building, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK   Email: stephen.clark@glasgow.ac.uk
› Author Affiliations
Further Information

Publication History

Received: 08 February 2017

Accepted after revision: 24 February 2017

Publication Date:
20 March 2017 (online)


Abstract

Acyclic conjugated ynenediones tethered to an alcohol or carboxylic acid are converted into furanyl-substituted cyclic ethers or lactones in a single step by treatment with the tetrahydrothiophene. Modest levels of diastereocontrol can be achieved in some cases where the presence of a substituent on the tether results in the creation of a second stereogenic centre upon formation of the cyclic ether or lactone.

Supporting Information

 
  • References and Notes

  • 1 Boto A, Alvarez L. Furan and Its Derivatives . In Heterocycles in Natural Product Synthesis. Majumdar KC, Chattopadhyay SK. Wiley-VCH; Weinheim: 2011: 99-152
  • 2 Wright R. J. Health Care Mark. 1996; 16: 24-24
  • 3 Albrecht Ł, Ransborg LK, Jørgensen KA. Catal. Sci. Technol. 2012; 2: 1089-1089
    • 4a Knorr L. Ber. Dtsch. Chem. Ges. 1884; 17: 2863-2863
    • 4b Paal C. Ber. Dtsch. Chem. Ges. 1884; 17: 2756-2756
    • 4c Feist F. Ber. Dtsch. Chem. Ges. 1902; 35: 1537-1537
    • 4d Benary E. Ber. Dtsch. Chem. Ges. 1911; 44: 493-493
    • 5a Vicente R, González J, Riesgo L, González J, López LA. Angew. Chem. Int. Ed. 2012; 51: 8063-8063
    • 5b González J, González J, Pérez-Calleja C, López LA, Vicente R. González J, González J, Pérez-Calleja C, López LA, Vicente R. Angew. Chem. Int. Ed. 2013; 52: 5853-5853
    • 6a Barluenga J, Riesgo L, Vicente R, López LA, Tomás M. J. Am. Chem. Soc. 2008; 130: 13528-13528
    • 6b Hu F, Xia Y, Ma C, Zhang Y, Wang J. J. Org. Chem. 2016; 81: 3275-3275
    • 7a Oh CH, Park HM, Park DI. Org. Lett. 2007; 9: 1191-1191
    • 7b Xia Y, Qu S, Xiao Q, Wang Z.-X, Qu P, Chen L, Liu Z, Tian L, Huang Z, Zhang Y, Wang J. J. Am. Chem. Soc. 2013; 135: 13502-13502
    • 7c Xia Y, Liu Z, Ge R, Xiao Q, Zhang Y, Wang J. Chem. Commun. 2015; 51: 11233-11233
  • 8 Chen Z.-W, Luo M.-T, Ye D.-N, Zhou Z.-G, Ye M, Liu L.-X. Synth. Commun. 2014; 44: 1825-1825
    • 9a Arcadi A, Alfonsi M, Chiarini M, Marinelli F. J. Organomet. Chem. 2009; 694: 576-576
    • 9b Blanc A, Tenbrink K, Weibel J.-M, Pale P. J. Org. Chem. 2009; 74: 5342-5342
    • 9c Hoffmann M, Miaskiewicz S, Weibel J.-M, Pale P, Blanc A. Beilstein J. Org. Chem. 2013; 9: 1774-1774
    • 9d Huang X, Peng B, Luparia M, Gomes LF. R, Veiros LF, Maulide N. Angew. Chem. Int. Ed. 2012; 51: 8886-8886
    • 9e Ma J, Jiang H, Zhu S. Org. Lett. 2014; 16: 4472-4472
  • 10 Clark JS, Boyer A, Aimon A, Garcia PE, Lindsay DM, Symington AD. F, Danoy Y. Angew. Chem. Int. Ed. 2012; 51: 12128-12128
    • 11a Kuroda H, Hanaki E, Kawakami M. Tetrahedron Lett. 1999; 40: 3753-3753
    • 11b Kuroda H, Hanaki E, Izawa H, Kano M, Itahashi H. Tetrahedron 2004; 60: 1913-1913
    • 11c Jung C.-K, Wang J.-C, Krische MJ. J. Am. Chem. Soc. 2004; 126: 4118-4118
    • 11d Albrecht Ł, Ransborg LK, Gschwend B, Jørgensen KA. J. Am. Chem. Soc. 2010; 132: 17886-17886
  • 12 Zhang L, Hasegawa I, Tatsuno T, Kawabata T, Ohta T, Tadano T. Heterocycles 2014; 89: 731-731
  • 13 Yan L, Dai G.-F, Yang J.-L, Liu F.-W, Liu H.-M. Bioorg. Med. Chem. Lett. 2007; 17: 3454-3454
  • 14 Lin T, Lin X, Lu C, Hu Z, Huang W, Huang Y, Shen Y. Eur. J. Org. Chem. 2009; 2975-2975
  • 15 Nagashima F, Suzuki M, Takaoka S, Asakawa Y. Chem. Pharm. Bull. 2000; 48: 1818-1818
  • 16 General Procedure for the Cyclisation of Simple Primary Alcohols and Carboxylic Acids such as Substrates 12, 13, 16, and 17 A solution of tetrahydrothiophene (1.0 mL of a 0.5 M solution in CH2Cl2) was added to the ynenedione (1 mmol), and the reaction mixture was stirred at 40 °C for 48 h. The mixture was then concentrated under reduced pressure and the residue purified by flash column chromatography on silica gel. 1-​(2-Methyl-5-tetrahydrofuranyl-3-furanyl)ethanone (14) Rf = 0.20 (PE–EtOAc, 5:2). 1H NMR (400 MHz, CDCl3): δ = 6.64 (1 H, s, CH-furan), 4.81 (1 H, dd, J = 6.7, 6.7 Hz, CHO), 3.97–3.92 (1 H, m, CH2O), 3.86–3.81 (1 H, m, CH2O), 2.53 (3 H, s, CH3C), 2.34 (3 H, s, CH3C=O), 2.20–2.13 (1 H, m, CH 2CHO), 2.09–1.99 (2 H, m, CH 2CHO, CH 2CH2O), 1.98–1.92 (1 H, m, CH 2CH2O). 13C NMR (101 MHz, CDCl3): δ = 194.1, 158.3, 153.0, 121.9, 107.2, 73.6, 68.4, 30.3, 29.1, 26.0, 14.5. IR (film): v max = 2941, 1668, 1565, 1406, 1231, 1028 cm–1. HMRS (EI): m/z calcd for C11H14O3 [M]+: 194.0943; found: 194.0938. 1-(2-Methyl-5-tetrahydropyranyl-3-furanyl)ethanone (15) Rf = 0.20 (PE–EtOAc, 5:1). 1H NMR (500 MHz, CDCl3): δ = 6.47 (1 H, s, CH-furan), 4.33 (1 H, dd, J = 10.3, 3.1 Hz, CHO), 4.07 (1 H, dddd, J = 11.4, 3.7, 1.8, 1.8 Hz, CH2O), 3.59 (1 H, ddd, J = 11.4, 11.4, 2.3 Hz, CH2O), 2.56 (3 H, s, CH3C), 2.37 (3H, s, CH3C=O), 1.97–1.93 (1 H, m, CH 2CH2CH2O), 1.87–1.76 (2 H, m, CH2 CHO), 1.69–1.55 (3 H, m, CH2 CH2O, CH 2CH2CH2O). 13C NMR (126 MHz, CDCl3): δ = 194.3, 158.2, 153.2, 121.9, 107.0, 72.8, 68.9, 29.6, 29.3, 25.8, 23.3, 14.6. IR (film): v max = 2937, 1676, 1566, 1406 cm–1. HMRS (EI): m/z calcd for C12H16O3 [M]+: 208.1099; found: 208.1103. Dihydro-5-​(4-acetyl-5-methyl-2-​furanyl)​-2(3H)​-​furanone (18) Rf = 0.18 (PE–EtOAc, 1:1); mp 63–65 °C. 1H NMR (400 MHz, CDCl3): δ = 6.63 (1 H, s, CH-furan), 5.41 (1 H, t, J = 7.2 Hz, CHO), 2.76–2.57 (2 H, m, CH 2CH 2), 2.56 (3 H, s, CH3C), 2.54–2.42 (2 H, m, CH 2CH 2), 2.37 (3 H, s, CH3C=O). 13C NMR (101 MHz, CDCl3): δ = 193.7, 176.2, 159.4, 148.8, 122.2, 110.0, 74.0, 29.2, 28.5, 26.5, 14.5. IR (film): v max = 1767, 1674, 1231, 1146 cm–1. ESI-HMRS: m/z calcd for C11H12NaO4 [M + Na]+: 231.0628; found: 231.0619. Tetrahydro-6-​(4-acetyl-5-methyl-2-​furanyl)​-2H-​pyran-​2-​one (19) Rf = 0.27 (PE–EtOAc, 1:1). 1H NMR (400 MHz, CDCl3): δ = 6.59 (1 H, s, CH-furan), 5.31 (1 H, dd, J = 9.6, 4.2 Hz, CHO), 2.69–2.50 (2 H, m, CH2CO), 2.56 (3 H, s, CH3C), 2.37 (3 H, s, CH3C=O), 2.19–1.87 (4 H, m, CH 2CH 2CHO). 13C NMR (126 MHz, CDCl3): δ = 193.8, 170.3, 158.9, 149.6, 122.1, 108.9, 74.6, 29.6, 29.2, 26.2, 18.4, 14.5. IR (film): v max = 1732, 1674, 1564 cm–1. ESI-HMRS: m/z calcd for C12H14O4 [M + Na]+ 245.0784; found: 245.0781.
  • 17 General Procedure for the Cyclisation of Secondary Alcohols and Aryl Substrates such as 24–28 and 35–38 A solution of tetrahydrothiophene (1.0 mL of a 0.5 M solution in CH2Cl2) was added to the ynenedione (1 mmol) and phenylphosphonic acid (0.1 mmol), and the reaction mixture was stirred at 40 °C for 48 h. The mixture was then concentrated under reduced pressure and the residue purified by flash column chromatography on silica gel.
  • 18 Diastereomers were assigned by the use of two-dimensional nuclear Overhauser spectroscopy (NOESY) in order to establish the spatial relationship between the ring-junction protons of the tetrahydrofuran or tetrahydropyran.