Synthesis 2017; 49(08): 1767-1784
DOI: 10.1055/s-0036-1588708
short review
© Georg Thieme Verlag Stuttgart · New York

Cyclocarbopalladation as a Key Step in Cascade Reactions: Recent Developments

Sarah Blouin
Université de Strasbourg, CNRS, LIT UMR 7200, 67000 Strasbourg, France   eMail: jean.suffert@unistra.fr
,
Gaelle Blond
Université de Strasbourg, CNRS, LIT UMR 7200, 67000 Strasbourg, France   eMail: jean.suffert@unistra.fr
,
Morgan Donnard
Université de Strasbourg, CNRS, LIT UMR 7200, 67000 Strasbourg, France   eMail: jean.suffert@unistra.fr
,
Mihaela Gulea
Université de Strasbourg, CNRS, LIT UMR 7200, 67000 Strasbourg, France   eMail: jean.suffert@unistra.fr
,
Jean Suffert*
Université de Strasbourg, CNRS, LIT UMR 7200, 67000 Strasbourg, France   eMail: jean.suffert@unistra.fr
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 18. Januar 2017

Accepted: 20. Januar 2017

Publikationsdatum:
10. Februar 2017 (online)


Dedicated to Professor Armin de Meijere for his great achievements in the field of cyclocarbopalladation in cascade reactions

Abstract

Cascade reactions are step-economical processes for the synthesis of complex molecules as they allow, in one step, the formation of multiple bonds. Over the last two decades cyclocarbopalladation has emerged as a powerful key step when integrated into these sequences and has allowed unprecedented valuable polycyclic scaffolds to be obtained. This review is focused on recent developments in this field including original cascade sequences, novel activation modes (C–H activation for instance) and unprecedented families of substrates.

1 Introduction

2 Formation of Carbocycles

2.1 4-exo Cyclocarbopalladation

2.2 5-exo Cyclocarbopalladation

2.3 5-endo Cyclocarbopalladation

2.4 Cyclocarbopalladation with Formation of Six-Membered Carbocycles

2.5 Cyclocarbopalladation with Formation of Seven-Membered Carbocycles

3 Formation of Heterocycles

3.1 Formation of Nitrogen Heterocycles

3.2 Formation of Oxygen Heterocycles

3.3 Formation of Sulfur Heterocycles

3.4 Formation of Silicon-Containing Heterocycles

4 Conclusion

 
  • References

    • 1a Wender PA, Miller BL. Nature 2009; 460: 197
    • 1b Bertz SH, Sommer TJ. Org. Synth. Theory Appl. 1993; 2: 67
    • 1c Malacria M. Chem. Rev. 1996; 96: 289
    • 1d Ang KH, Bräse S, Steinig AG, Meyer FE, Llebaria A, Voigt K, de Meijere A. Tetrahedron 1996; 52: 11503
    • 1e Henniges H, Meyer FE, Schick U, Funke F, Parsons PJ, de Meijere A. Tetrahedron 1996; 52: 11545
    • 1f Wender PA, Nuss JM, Smith DB, Suarez-Sobrino A, Vagberg J, Decosta D, Bordner J. J. Org. Chem. 1997; 62: 4908
    • 2a Düfert A, Werz DB. Chem. Eur. J. 2016; 22: 16718
    • 2b Ardkhean R, Caputo DF. J, Morrow SM, Shi H, Xiong Y, Anderson EA. Chem. Soc. Rev. 2016; 45: 1557
  • 3 Bräse S. Synlett 1999; 1654
  • 4 Hitce J, Baudoin O. Adv. Synth. Cat. 2007; 349: 2054
  • 5 Albarghouti G, Kotikalapudi R, Lankri D, Valerio V, Tsvelikhovsky D. Chem. Commun. 2016; 52: 3095
  • 6 Suffert J, Salem B, Klotz P. J. Am. Chem. Soc. 2001; 123: 12107
  • 7 Salem B, Klotz P, Suffert J. Org. Lett. 2003; 5: 845
  • 8 Blond G, Bour C, Salem B, Suffert J. Org. Lett. 2008; 10: 1075
  • 9 Ghosh N, Maiereanu C, Suffert J, Blond G. Synlett 2016; in press; DOI: DOI: 10.1055/s-0036-1588658.
  • 10 Petrignet J, Boudhar A, Blond G, Suffert J. Angew. Chem. Int. Ed. 2011; 50: 3285
  • 11 Lauer U, Anke T, Sheldrick WS, Scherer A, Steglich W. J. Antibiot. 1989; 42: 875
    • 12a Nozoe S, Morisaki M, Tsuda K, Iitaka Y, Takahashi N, Tamura S, Ishibashi K, Shirasaka M. J. Am. Chem. Soc. 1965; 87: 4968
    • 12b Erguang L, Clark AM, Rotella DP, Hufford CD. J. Nat. Prod. 1995; 58: 74
  • 13 Salem B, Suffert J. Angew. Chem. Int. Ed. 2004; 43: 2826
  • 14 Boudhar A, Charpenay C, Blond G, Suffert J. Angew. Chem. Int. Ed. 2013; 52: 12786
    • 15a Hulot C, Blond G, Suffert J. J. Am. Chem. Soc. 2008; 130: 5046
    • 15b Hulot C, Amiri S, Blond G, Schreiner P, Suffert J. J. Am. Chem. Soc. 2009; 131: 13387
  • 16 Charpenay M, Boudhar A, Blond G, Suffert J. Angew. Chem. Int. Ed. 2012; 51: 4379
  • 17 Blouin S, Gandon V, Blond G, Suffert J. Angew. Chem. Int. Ed. 2016; 55: 7208
  • 18 Salem B, Delort E, Klotz P, Suffert J. Org. Lett. 2003; 5: 2307
  • 19 Bour C, Suffert J. Org. Lett. 2005; 7: 653
  • 20 Mota AJ, Dedieu A, Bour C, Suffert J. J. Am. Chem. Soc. 2005; 127: 7171
  • 21 Zhu D, Wu Y, Wu B, Luo B, Ganesan A, Wu F.-H, Pi R, Huang P, Wen S. Org. Lett. 2014; 16: 2350
  • 22 Alza E, Laraia L, Ibbeson BM, Collins S, Galloway WR. J. D, Stokes JE, Venkitaraman AR, Spring DR. Chem. Sci. 2015; 6: 390
  • 23 Min S.-H, Pang S.-J, Cho C.-G. Tetrahedron Lett. 2003; 44: 4439
  • 24 Oh CH, Lim YM. Tetrahedron Lett. 2003; 44: 267
  • 25 Kim KH, Kim SH, Park S, Kim JN. Tetrahedron 2011; 67: 3328
  • 26 Rivera-Fuentes P, von Wantoch Rekowski M, Schweizer WB, Gisselbrecht J.-P, Boudon C, Diederich F. Org. Lett. 2012; 14: 4066
  • 27 Demircan A. Molecules 2014; 19: 6058
  • 28 Kim KH, Kim SY, Moon HR, Kim JN. Bull. Korean Chem. Soc. 2016; 37: 238
  • 29 Tokan WM, Schweizer S, Thies C, Meyer FE, Parsons PJ, de Meijere A. Helv. Chim. Acta 2009; 92: 1729
  • 30 Wallbaum J, Neufeld R, Stalke D, Werz DB. Angew. Chem. Int. Ed. 2013; 52: 13243
  • 31 Fields WH, Khan AK, Sabat M, Chruma JJ. Org. Lett. 2008; 10: 5131
  • 32 Doi T, Iijima Y, Takasaki M, Takahashi T. J. Org. Chem. 2007; 72: 3667
  • 33 Zhao J, Asao N, Yamamoto Y, Jin T. Tetrahedron Lett. 2015; 56: 3133
  • 34 Li S, Luo Y, Wang X, Guo M, Wu J. Chem. Asian J. 2012; 7: 1691
  • 35 Jeffrey JL, Sarpong R. Tetrahedron Lett. 2009; 50: 1969
  • 36 Jia X, Petrone DA, Lautens M. Angew. Chem. Int. Ed. 2012; 51: 9870
  • 37 Braun M.-G, Katcher MH, Doyle AG. Chem. Sci. 2013; 4: 1216
  • 38 Hu Y, Zhou J, Lian H, Zhu C, Pan Y. Synthesis 2003; 1177
  • 39 Hu J, Hirao H, Li Y, Zhou J. Angew. Chem. Int. Ed. 2013; 52: 8676
  • 40 Rahman SM. A, Sonoda M, Itahashi K, Tobe Y. Org. Lett. 2003; 5: 3411
  • 41 Hu Y, Sun Y, Hu J, Zhu T, Yu T, Zhao Q. Chem. Asian J. 2011; 6: 797
  • 42 Tietze LF, Hungerland T, Depken C, Maa C, Stalke D. Synlett 2012; 23: 2516
  • 43 Kim KH, Lee HS, Kim SH, Kim SH, Kim JN. Chem. Eur. J. 2010; 16: 2375
  • 44 von Seebach M, Grigg R, de Meijere A. Eur. J. Org. Chem. 2002; 3268
  • 45 Volla CM. R, Bäckvall J.-E. Org. Lett. 2014; 16: 4174
  • 46 Kim ES, Kim KH, Park S, Kim JN. Tetrahedron Lett. 2010; 51: 4648
  • 47 Schweizer S, Schelper M, Thies C, Parsons PJ, Noltemeyer M, de Meijere A. Synlett 2001; 920
  • 48 Gómez-Reino C, Vitale C, Maestro M, Mouriño A. Org. Lett. 2005; 7: 5885
  • 49 Sokolowska K, Carballa D, Seoane S, Pérez-Fernández R, Mouriño A, Sicinski RR. J. Org. Chem. 2015; 80: 165
  • 50 Satyanarayana G, Maichle-Mössmer C, Maier ME. Chem. Commun. 2009; 1571
  • 51 Lucciola D, Keay BA. Synlett 2011; 1618
  • 52 Liu R, Zhang J. Adv. Synth. Catal. 2011; 353: 36
  • 53 Gericke KM, Chai DI, Bieler N, Lautens M. Angew. Chem. Int. Ed. 2009; 48: 1447
  • 54 Catellani M, Frignani F, Rangoni A. Angew. Chem. Int. Ed. 1997; 36: 119
  • 55 Liu H, El-Salfiti M, Chai DI, Auffret J, Lautens M. Org. Lett. 2012; 14: 3648
  • 56 Cordonnier M.-CA, Kan SB. J, Anderson EA. Chem. Commun. 2008; 5818
  • 57 Nakano S, Inoue N, Hamada Y, Nemoto T. Org. Lett. 2015; 17: 2622
    • 58a Vlaar T, Ruijter E, Orru RV. A. Adv. Synth. Catal. 2011; 353: 809
    • 58b Majumdar KC, Samanta S, Sinha B. Synthesis 2012; 44: 817
    • 58c Ohno H. Asian J. Org. Chem. 2013; 2: 18
    • 58d de Meijere A, von Zezschwitz P, Bräse S. Acc. Chem. Res. 2005; 38: 413
    • 58e Nakamura I, Yamamoto Y. Chem. Rev. 2004; 104: 2127

      For relevant examples, see:
    • 59a Lee C.-W, Oh KS, Kim KS, Ahn KH. Org. Lett. 2000; 2: 1213
    • 59b Fretwell P, Grigg R, Sansano JM, Sridharan V, Sukirthalingam S, Wilson D, Redpath J. Tetrahedron 2000; 56: 7525
    • 59c Casaschi A, Grigg R, Sansano JM, Wilson D, Redpath J. Tetrahedron 2000; 56: 7541
    • 59d Rossi E, Arcadi A, Abbiati G, Attanasi OA, De CL. Angew. Chem. Int. Ed. 2002; 41: 1400
    • 59e Hu Y, Zhou J, Long X, Han J, Zhu C, Pan Y. Tetrahedron Lett. 2003; 44: 5009
    • 59f Oh CH, Lim YM. Tetrahedron Lett. 2003; 44: 267
    • 59g Kan SB. J, Anderson EA. Org. Lett. 2008; 10: 2323
    • 59h Nandi S, Ray JK. Tetrahedron Lett. 2009; 50: 6993
    • 59i D’Souza DM, Muschelknautz C, Rominger F, Muller TJ. J. Org. Lett. 2010; 12: 3364
    • 59j Meng T, Hu Y, Sun Y, Zhu T, Wang S. Tetrahedron 2010; 66: 8648
    • 59k Newman SG, Howell JK, Nicolaus N, Lautens M. J. Am. Chem. Soc. 2011; 133: 14916
    • 59l Packer G, Lepre K, Kankanala J, Sridharan V. RSC Adv. 2014; 4: 3457
    • 59m Liu B, Song R.-J, Ouyang X.-H, Li Y, Hu M, Li J.-H. Chem. Commun. 2015; 51: 12819
    • 59n Miranda LD, Hernandez-Vazquez E. J. Org. Chem. 2015; 80: 10611
    • 59o Moni L, Gers-Panther CF, Anselmo M, Mueller TJ. J, Riva R. Chem. Eur. J. 2016; 22: 2020
  • 60 Kong W, Wang Q, Zhu J. J. Am. Chem. Soc. 2015; 137: 16028
  • 61 Wu X.-X, Chen W.-L, Shen Y, Chen S, Xu P.-F, Liang Y.-M. Org. Lett. 2016; 18: 1784
  • 62 Ohno H, Yamamoto M, Iuchi M, Tanaka T. Angew. Chem. Int. Ed. 2005; 44: 5103
    • 63a Hu Y, Song F, Wu F, Cheng D, Wang S. Chem. Eur. J. 2008; 14: 3110
    • 63b Hu Y, Yu C, Ren D, Hu Q, Zhang L, Cheng D. Angew. Chem. Int. Ed. 2009; 48: 5448
    • 63c Hu Y, Qu Y, Wu F, Gui J, Wei Y, Hu Q, Wang S. Chem. Asian J. 2010; 5: 309
    • 63d Hu Y, Lin X, Zhu T, Wan J, Sun Y, Zhao Q, Yu T. Synthesis 2010; 3467
  • 64 Ruck RT, Huffman MA, Kim MM, Shevlin M, Kandur WV, Davies IW. Angew. Chem. Int. Ed. 2008; 47: 4711
  • 65 Pérez-Gómez M, García-López J.-A. Angew. Chem. Int. Ed. 2016; 55: 14389
  • 66 Liu X, Li B, Gu Z. J. Org. Chem. 2015; 80: 7547
  • 67 Liu X, Gu Z. Org. Chem. Front. 2015; 2: 778
  • 68 Jiang T.-S, Tang R.-Y, Zhang X.-G, Li X.-H, Li J.-H. J. Org. Chem. 2009; 74: 8834
    • 69a Le CM, Menzies PJ. C, Petrone DA, Lautens M. Angew. Chem. Int. Ed. 2015; 54: 254
    • 69b Le CM, Hou X, Sperger T, Schoenebeck F, Lautens M. Angew. Chem. Int. Ed. 2015; 54: 15897
  • 70 Paraja M, Valdés C. Chem. Commun. 2016; 52: 6312
  • 71 Barluenga J, Fernandez MA, Aznar F, Valdes C. Chem. Eur. J. 2005; 11: 2276
  • 72 Jensen T, Pedersen H, Bang-Andersen B, Madsen R, Jørgensen M. Angew. Chem. Int. Ed. 2008; 47: 888
  • 73 Grigg R, Koppen I, Rasparini M, Sridharan V. Chem. Commun. 2001; 964

    • For recent examples based on a similar approach, see:
    • 74a Alcaide B, Almendros P, Aragoncillo C. Chem. Eur. J. 2002; 8: 1719
    • 74b Cooper IR, Grigg R, MacLachlan WS, Sridharan V, Thornton-Pett M. Tetrahedron Lett. 2003; 44: 403
    • 74c Okano A, Mizutani T, Oishi S, Tanaka T, Ohno H, Fujii N. Chem. Commun. 2008; 3534
    • 74d Beccalli EM, Broggini G, Clerici F, Galli S, Kammerer C, Rigamonti M, Sottocornola S. Org. Lett. 2009; 11: 1563
    • 74e Nakano S, Inoue N, Hamada Y, Nemoto T. Org. Lett. 2015; 17: 2622
  • 75 Hiroi K, Hiratsuka Y, Watanabe K, Abe I, Kato F, Hiroi M. Synlett 2001; 263
  • 76 Couty S, Liégault B, Meyer C, Cossy J. Org. Lett. 2004; 6: 2511
  • 77 Couty S, Meyer C, Cossy J. Tetrahedron Lett. 2006; 47: 767
    • 78a Campbell CD, Greenaway RL, Holton OT, Chapman HA, Anderson EA. Chem. Commun. 2014; 50: 5187
    • 78b Campbell CD, Greenaway RL, Holton OT, Walker PR, Chapman HA, Russell CA, Carr G, Thomson AL, Anderson EA. Chem. Eur. J. 2015; 21: 12627
  • 79 Greenaway RL, Campbell CD, Holton OT, Russell CA, Anderson EA. Chem. Eur. J. 2011; 17: 14366
    • 80a Arcadi A, Blesi F, Cacchi S, Fabrizi G, Goggiamani A, Marinelli F. J. Org. Chem. 2013; 78: 4490
    • 80b Paul K, Jalal S, Kundal S, Jana U. J. Org. Chem. 2015; 81: 1164
  • 81 Zhu G, Zhang Z. Org. Lett. 2003; 5: 3645
  • 82 Kressierer CJ, Müller TJ. J. Angew. Chem. Int. Ed. 2004; 43: 5997
  • 83 Fang X, Tong X. Tetrahedron Lett. 2010; 51: 317
  • 84 de Meijere A, Schelper M, Knoke M, Yucel B, Sünnemann HW, Scheurich RP, Arve L. J. Organomet. Chem. 2003; 687: 249
  • 85 Ghosh M, Singha R, Dhara S, Ray JK. RSC Adv. 2015; 5: 85911
  • 86 Lyons TW, Sanford MS. Tetrahedron 2009; 65: 3211
    • 87a Leibeling M, Koester DC, Pawliczek M, Schild SC, Werz DB. Nat. Chem. Biol. 2010; 6: 199
    • 87b Leibeling M, Koester DC, Pawliczek M, Kratzert D, Dittrich B, Werz DB. Bioorg. Med. Chem. 2010; 18: 3656
  • 88 Murthy AS, Donikela S, Reddy CS, Chegondi R. J. Org. Chem. 2015; 80: 5566
  • 89 Milde B, Leibeling M, Hecht A, Jones PG, Visscher A, Stalke D, Grunenberg J, Werz DB. Chem. Eur. J. 2015; 21: 16136
  • 90 Ye J, Shi Z, Sperger T, Yasukawa Y, Kingston C, Schoenebeck F, Lautens M. Nat. Chem. 2016; in press; DOI: DOI: 10.1038/nchem.2631.
  • 91 Le Strat F, Harrowven DC, Maddaluno J. J. Org. Chem. 2005; 70: 489
  • 92 Tietze LF, Lotz F. Eur. J. Org. Chem. 2006; 4676
  • 93 Yu H, Richey RN, Carson MW, Coghan MJ. Org. Lett. 2006; 8: 1685
  • 94 Tietze LF, Duefert S.-C, Clerc J, Bischoff M, Maa C, Stalke D. Angew. Chem. Int. Ed. 2013; 52: 3191
    • 95a Casaschi A, Grigg R, Sansano JM. Tetrahedron 2001; 57: 607
    • 95b Grigg R, Savic V, Sridharan V, Terrier C. Tetrahedron 2002; 58: 8613
  • 96 Nandi S, Singha R, Ray JK. Tetrahedron 2015; 71: 669
  • 97 Kaur N. Catal. Rev. 2005; 57: 478
  • 98 Castanheiro T, Donnard M, Gulea M, Suffert J. Org. Lett. 2014; 16: 3060
    • 99a Castanheiro T, Suffert J, Donnard M, Gulea M. Phosphorus, Sulfur Silicon Relat. Elem. 2017; 192: 162
    • 99b Castanheiro T., Schoenfelder A., Suffert J., Donnard M., Gulea M.; C. R. Chim.; DOI: 10.1016/j.crci.2016.12.007.
  • 100 Teplý F, Stará IG, Starý I, Kollárovič A, Săman D, Fiedler P. Tetrahedron 2002; 58: 9007
  • 101 Chernyak D, Gevorgyan V. Org. Lett. 2010; 12: 5558
  • 102 Leibeling M, Werz DB. Beilstein J. Org. Chem. 2010; 9: 2194