Synthesis 2017; 49(05): 998-1008
DOI: 10.1055/s-0036-1588680
feature
© Georg Thieme Verlag Stuttgart · New York

Synthesis of β-l-2′-Fluoro-3′-thiacytidine (F-3TC) Stereoisomers: Toward a New Class of Oxathiolanyl Nucleosides?

Daniele D’Alonzo*
Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, via Cintia, 80126 Napoli, Italy   eMail: dandalonzo@unina.it
,
Maria De Fenza
Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, via Cintia, 80126 Napoli, Italy   eMail: dandalonzo@unina.it
,
Giovanni Palumbo
Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, via Cintia, 80126 Napoli, Italy   eMail: dandalonzo@unina.it
,
Valeria Romanucci
Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, via Cintia, 80126 Napoli, Italy   eMail: dandalonzo@unina.it
,
Armando Zarrelli
Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, via Cintia, 80126 Napoli, Italy   eMail: dandalonzo@unina.it
,
Giovanni Di Fabio
Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, via Cintia, 80126 Napoli, Italy   eMail: dandalonzo@unina.it
,
Annalisa Guaragna
Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, via Cintia, 80126 Napoli, Italy   eMail: dandalonzo@unina.it
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 01. Dezember 2016

Accepted after revision: 01. Dezember 2016

Publikationsdatum:
30. Dezember 2016 (online)


Abstract

The synthesis of (1′S,2′S,4′R) and (1′S,2′R,4′R) stereoisomers of 2′-fluoro-3′-thiacytidine [(2′S)-F-3TC and (2′R)-F-3TC], the earliest examples of oxathiolanyl nucleosides with a fluorine atom in the ‘sugar’ backbone, is herein reported. From of a variety of synthetic routes devised for their preparation, the Pummerer rearrangement of protected lamivudine sulfoxides was successfully exploited for fluorine atom introduction. Despite the presence of three potentially labile stereocenters in such a small molecule, the (2′R)-isomer of F-3TC exhibited good chemical stability after protective group cleavage. Conversely, the (2′S)-epimer suffered from weak stability, owing to the formation of an undesired cyclization product. Based on the remarkable antiviral efficacy of the parent drugs, the access to 2′-fluorinated oxathiolanyl nucleosides (and more generally, 2′-fluorinated heterocyclic nucleosides) may provide a new source of candidates with antiviral potential.

Supporting Information

 
  • References

    • 1a De Clercq E. Nat. Rev. Drug Discovery 2002; 1: 13
    • 1b Jordheim LP, Durantel D, Zoulim F, Dumontet C. Nat. Rev. Drug Discovery 2013; 12: 447
  • 2 Modified Nucleosides: in Biochemistry Biotechnology and Medicine. Herdewijn P. Wiley-VCH; Weinheim: 2008
  • 3 Sarafianos SG, Das K, Clark AD. Jr, Ding J, Boyer PL, Hughes SH, Arnold E. Proc. Natl. Acad. Sci. U.S.A. 1999; 96: 10027
  • 4 Sabini E, Hazra S, Konrad M, Lavie A. J. Med. Chem. 2007; 50: 3004
  • 5 Wang P, Hong JH, Cooperwood JS, Chu CK. Antiviral Res. 1998; 40: 19

    • For selected reviews in various research areas, see:
    • 6a Durani S. Acc. Chem. Res. 2008; 41: 1301
    • 6b Olubiyi OO, Frenzel D, Bartnik D, Glück JM, Brener O, Nagel-Steger L, Funke SA, Willbold D, Strodel B. Curr. Med. Chem. 2014; 21: 1448
    • 6c D’Alonzo D, Guaragna A, Palumbo G. Curr. Org. Chem. 2009; 13: 71
    • 6d D’Alonzo D, Guaragna A, Palumbo G. Curr. Med. Chem. 2009; 16: 473
    • 6e D’Alonzo D, Guaragna A, Palumbo G. Chem. Biodiversity 2011; 8: 373
    • 6f Vater A, Klussmann S. Drug Discovery Today 2015; 20: 147
  • 7 Mathé C, Gosselin G. Antiviral Res. 2006; 71: 276
  • 8 D’Alonzo D, Guaragna A In Chemical Synthesis of Nucleoside Analogues . Merino P. John Wiley & Sons; Hoboken: 2013
  • 9 Antiviral Nucleosides: Chiral Synthesis and Chemotherapy. Chu CK. Elsevier; Amsterdam: 2003
  • 10 Romeo G, Chiacchio U, Corsaro A, Merino P. Chem. Rev. 2010; 110: 3337
  • 11 See for example: Chimalakonda KC, Agarwal HK, Kumar A, Parang K, Mehvar R. Bioconjugate Chem. 2007; 18: 2097
  • 12 Li Q, Du YZ, Yuan H, Zhang XG, Miao J, Cui FD, Hu FQ. Eur. J. Pharm. Sci. 2010; 41: 498
  • 13 See for example: Erion MD, Reddy KR, Boyer SH, Matelich MC, Gomez-Galeno J, Lemus RH, Ugarkar BG, Colby TJ, Schanzer J, Van Poelje PD. J. Am. Chem. Soc. 2004; 126: 5154
  • 14 See for example: Boyle NA, Rajwanshi VK, Prhavc M, Wang G, Fagan P, Chen F, Ewing GJ, Brooks JL, Hurd T, Leeds JM, Bruice TW, Cook PD. J. Med. Chem. 2005; 48: 2695
  • 15 Aquaro S, Wedgwood O, Yarnold C, Cahard D, Pathinara R, Mcguigan C, Caliò R, De Clercq E, Balzarini J, Perno CF. Antimicrob. Agents Chemother. 2000; 44: 173
  • 16 See for example: Anastasi C, Vlieghe P, Hantz O, Schorr O, Pannecouque C, Witvrouw M, De Clercq E, Clayette P, Dereuddre-Bosquet N, Dormont D, Gondois-Rey F, Hirsch I, Kraus J.-L. Bioorg. Med. Chem. Lett. 2003; 13: 2459
  • 17 Ravetti S, Gualdesi MS, Trinchero-Hernández JS, Turk G, Briñón MC. Bioorg. Med. Chem. 2009; 17: 6407
  • 18 Anastasi C, Hantz O, De Clercq E, Pannecouque C, Clayette P, Dereuddre-Bosquet N, Dormont D, Gondois-Rey F, Hirsch I, Kraus J.-L. J. Med. Chem. 2004; 47: 1183
    • 19a Ray AS, Schinazi RF, Murakami E, Basavapathruni A, Shi J, Zorca SM, Chu CK, Anderson KS. Antiviral Chem. Chemother. 2003; 14: 115
    • 19b Liu P, Sharon A, Chu CK. J. Fluorine Chem. 2008; 129: 743
  • 20 D’Errico S, Oliviero G, Borbone N, Amato J, D’Alonzo D, Piccialli V, Mayol L, Piccialli G. Molecules 2012; 17: 13036
    • 21a Marquez VE, Tseng CK.-H, Mitsuya H, Aoki S, Kelley JA, Ford HJr, Roth JS, Broder S, Johns DG, Driscoll JS. J. Med. Chem. 1990; 33: 978
    • 21b Mu L, Sarafianos SG, Nicklaus MC, Russ P, Siddiqui MA, Ford HJr, Mitsuya H, Le R, Kodama E, Meier C, Knispel T, Anderson L, Barchi JJ. Jr, Marquez VE. Biochemistry 2000; 39: 11205
  • 22 Ayala L, Lucero CG, Romero JA. C, Tabacco SA, Woerpel KA. J. Am. Chem. Soc. 2003; 125: 15521
  • 23 Choi W.-B, Wilson LJ, Yeola S, Liotta DC, Schinazi RF. J. Am. Chem. Soc. 1991; 113: 9377
  • 24 Caputo R, Guaragna A, Palumbo G, Pedatella S. Eur. J. Org. Chem. 1999; 1455
  • 25 D’Errico S, Oliviero G, Amato J, Borbone N, Cerullo V, Hemminki A, Piccialli V, Zaccaria S, Mayol L, Piccialli G. Chem. Commun. 2012; 48: 9310
  • 26 Steiner DD, Mase N, Barbas III CF. Angew. Chem. Int. Ed. 2005; 44: 3706
  • 27 Fluorination attempts were also conducted in DMF, obtaining however a complex mixture of reaction products.
  • 28 Beeson TD, MacMillan DW. C. J. Am. Chem. Soc. 2005; 127: 8826
  • 29 We do not currently have sufficient information to establish whether the enhancement in the reaction efficiency by i-PrOH may deal with a catalyst’s activation or with a direct participation of the sec-alcohol in the catalytic cycle. Studies aimed to elucidate this uncommon behavior are, however, underway.
  • 30 A SN1-type fluorine displacement from compounds 10a,b (via thionium ion 12) was hypothesized to explain formation of 11 (Scheme 5).
  • 31 Kwiatkowski P, Beeson TD, Conrad JC, MacMillan DW. C. J. Am. Chem. Soc. 2011; 133: 1738
    • 32a Ma J.-A, Cahard D. Chem. Rev. 2008; 108: PR1
    • 32b Cahard D, Xu X, Couve-Bonnaire S, Pannecoucke X. Chem. Soc. Rev. 2010; 39: 558
  • 33 It should be noted that acetate 13 could be easily replaced by its optically pure form using one of the many synthetic procedures available for its preparation, see ref. 8.
  • 34 Caso MF, D’Alonzo D, D’Errico S, Palumbo G, Guaragna A. Org. Lett. 2015; 17: 2626
  • 35 Brunel J.-M, Diter P, Duetsch M, Kagan HB. J. Org. Chem. 1995; 60: 8086
  • 36 As witnessed by the color change of the reaction mixture (from colorless to purple), the reaction mechanism is expected to involve formation of molecular iodine according to Scheme 6.
  • 37 Hayashi M, Hashimoto S, Noyori R. Chem. Lett. 1984; 1747
  • 38 Nowak I, Jones CT, Robins MJ. J. Org. Chem. 2006; 71: 3077
    • 39a Wasylishen RE, Barfield M. J. Am. Chem. Soc. 1975; 97: 4545
    • 39b Trempe J.-C, Wilds CJ, Denisov AY, Pon RT, Damha MJ, Gehring K. J. Am. Chem. Soc. 2001; 123: 4896
  • 40 Lu S.-R, Lai Y.-H, Chen J.-H, Liu C.-Y, Mong K.-KT. Angew. Chem. Int. Ed. 2011; 50: 7315

    • This project is part of a research program aimed to study the role of conformation and configuration in the selectivity of the recognition processes, see refs 6c–e, ref 8 and:
    • 41a D’Alonzo D, Van Aerschot A, Guaragna A, Palumbo G, Schepers G, Capone S, Rozenski J, Herdewijn P. Chem. Eur. J. 2009; 15: 10121
    • 41b D’Alonzo D, Guaragna A, Van Aerschot A, Herdewijn P, Palumbo G. J. Org. Chem. 2010; 75: 6402
    • 41c D’Alonzo D, Amato J, Schepers G, Froeyen M, Van Aerschot A, Herdewijn P, Guaragna A. Angew. Chem. Int. Ed. 2013; 52: 6662
    • 41d D’Alonzo D, Froeyen M, Schepers G, Di Fabio G, Van Aerschot A, Herdewijn P, Palumbo G, Guaragna A. J. Org. Chem. 2015; 80: 5014
    • 41e Paolella C, D’Alonzo D, Schepers G, Van Aerschot A, Di Fabio G, Palumbo G, Herdewijn P, Guaragna A. Org. Biomol. Chem. 2015; 13: 10041
  • 42 Bruker-Nonius SADABS, Bruker-Nonius: Delft / The Netherlands, 2002.
  • 43 Altomare A, Burla MC, Camalli M, Cascarano GL, Giacovazzo C, Guagliardi A, Moliterni GG, Polidori G, Spagna R. J. Appl. Crystallogr. 1999; 32: 115
  • 44 Sheldrick GM. Acta Crystallogr., Sect. A 2008; 64: 112
  • 45 Farrugia LJ. J. Appl. Crystallogr. 1999; 32: 837