Synthesis 2017; 49(07): 1561-1568
DOI: 10.1055/s-0036-1588666
paper
© Georg Thieme Verlag Stuttgart · New York

New and Convenient Chemoenzymatic Syntheses of (S)-2-Hydroxy-3-octanone, the Major Pheromone Component of Xylotrechus spp., and Its R-Enantiomer

Marc Puigmartí
Department of Biological Chemistry and Molecular Modelling, Institute of Advanced Chemistry of Catalonia (CSIC), Jordi Girona 18, 08034 Barcelona, Spain   Email: angel.guerrero@iqac.csic.es
,
María Pilar Bosch
Department of Biological Chemistry and Molecular Modelling, Institute of Advanced Chemistry of Catalonia (CSIC), Jordi Girona 18, 08034 Barcelona, Spain   Email: angel.guerrero@iqac.csic.es
,
Josep Coll
Department of Biological Chemistry and Molecular Modelling, Institute of Advanced Chemistry of Catalonia (CSIC), Jordi Girona 18, 08034 Barcelona, Spain   Email: angel.guerrero@iqac.csic.es
,
Angel Guerrero*
Department of Biological Chemistry and Molecular Modelling, Institute of Advanced Chemistry of Catalonia (CSIC), Jordi Girona 18, 08034 Barcelona, Spain   Email: angel.guerrero@iqac.csic.es
› Author Affiliations
Further Information

Publication History

Received: 14 October 2016

Accepted after revision: 11 November 2016

Publication Date:
15 December 2016 (online)


Abstract

New and efficient chemoenzymatic approaches for the synthesis of both enantiomers of 2-hydroxy-3-octanone in good yields and excellent enantioselectivity are presented. The S-enantiomer is a pheromone component of economically important pests in Japan, India, China, and other Asian countries. The enzymatic approaches involve transesterification of the racemic acyloin with vinyl acetate in the presence of Candida antarctica lipase B (CAL B) in 99% ee of both enantiomers (E = 167–618), or hydrolysis of the acetylated acyloin by double kinetic resolution with CAL B and C. antarctica lipase A (CAL A) in 96–98% ee of either enantiomer (E = 458). CAL A and CAL B induce reverse enantioselectivity.

Supporting Information

 
  • References

  • 1 Hoyos P, Sinisterra J.-V, Molinari F, Alcántara AR, Domínguez de María P. Acc. Chem. Res. 2010; 43: 288
    • 3a Bogevig A, Sunden H, Cordova A. Angew. Chem. Int. Ed. 2004; 43: 1109
    • 3b Davis FA, Chen BC. Chem. Rev. 1992; 92: 919
    • 3c Plietker B. Eur. J. Org. Chem. 2005; 1919
    • 4a Alamsetti SK, Muthupandi P, Sekar G. Chem. Eur. J. 2009; 15: 5424
    • 4b Muthupandi P, Alamsetti SK, Sekar G. Chem. Commun. 2009; 3288
    • 5a Onomura O, Arimoto H, Matsumura Y, Demizu Y. Tetrahedron Lett. 2007; 48: 8668
    • 5b Zhang JD, Xu TT, Li Z. Adv. Synth. Catal. 2013; 355: 3147
    • 6a Adam W, Díaz MT, Fell RT, Saha-Möller CR. Tetrahedron: Asymmetry 1996; 7: 2207
    • 6b Agudo R, Roiban G.-D, Lonsdale R, Ilie A, Reetz MT. J. Org. Chem. 2015; 80: 950
    • 6c Molinari F. Curr. Org. Chem. 2006; 10: 1247
    • 6d Petrenz A, Domínguez de María P, Ramanathan A, Hanefeld U, Ansorge-Schumacher MB, Kara S. J. Mol. Catal. B: Enzym. 2015; 114: 42
    • 6e Tanyeli C, Akhmedov I, Iyigun C. Tetrahedron: Asymmetry 2006; 17: 1125
  • 7 Hoyos P, Fernandez M, Sinisterra J.-V, Alcántara AR. J. Org. Chem. 2006; 71: 7632
    • 8a Adam W, Díaz MT, Saha-Möller CR. Tetrahedron: Asymmetry 1998; 9: 791
    • 8b Scheid G, Ruijter E, Konarzycka-Bessler M, Bornscheuer UT, Wessjohann LA. Tetrahedron: Asymmetry 2004; 15: 2861
  • 9 Scheid G, Kuit W, Ruijter E, Orru RV. A, Henke E, Bornscheuer U, Wessjohann LA. Eur. J. Org. Chem. 2004; 1063
  • 10 Bortolini O, Fantin G, Fogagnolo M, Giovannini PP, Guerrini A, Medici A. J. Org. Chem. 1997; 62: 1854
  • 11 Nakamura K, Kondo S, Kawai Y, Hida K, Kitano K, Ohno A. Tetrahedron: Asymmetry 1996; 7: 409
    • 12a Iwabuchi K, Takahashi J, Nakagawa Y, Sakai T. Appl. Entomol. Zool. 1986; 21: 21
    • 12b Sakai T, Nakagawa Y, Takahashi J, Iwabuchi K, Ishii K. Chem. Lett. 1984; 263
  • 13 Kuwahara Y, Matsuyama S, Suzuki T. Appl. Entomol. Zool. 1987; 22: 25
  • 14 Hall DR, Cork A, Phythian SJ, Chittamuru S, Jayarama BK, Venkatesha MG, Sreedharan K, Vinod Kumar PK, Seetharama HG, Naidu R. J. Chem. Ecol. 2006; 32: 195
  • 15 Mori K, Otsuka T. Tetrahedron 1985; 41: 553
  • 16 Kawai Y, Hida K, Tsujimoto M, Kondo S, Kitano K, Nakamura K, Ohno A. Bull. Chem. Soc. Jpn. 1999; 72: 99
  • 17 Leal WS, Shi X, Nakamuta K, Ono M, Meinwald J. Proc. Natl. Acad. Sci. U.S.A. 1995; 92: 1038
  • 18 Uppenberg J, Oehrner N, Norin M, Hult K, Kleywegt GJ, Patkar S, Waagen V, Anthonsen T, Jones TA. Biochemistry 1995; 34: 16838
    • 19a Anderson EM, Karin M, Kirk O. Biocatal. Biotransform. 1998; 16: 181
    • 19b Gotor-Fernández V, Busto E, Gotor V. Adv. Synth. Catal. 2006; 348: 797
    • 19c Orrenius C, Norin T, Hult K, Carrea G. Tetrahedron: Asymmetry 1995; 6: 3023
    • 19d Persson BA, Larsson AL. E, Le Ray M, Bäckvall J.-E. J. Am. Chem. Soc. 1999; 121: 1645
  • 20 Hall DR, Amarawardana L, Cross JV, Francke W, Boddum T, Hillbur Y. J. Chem. Ecol. 2012; 38: 2
  • 21 Domínguez de María P, Carboni-Oerlemans C, Tuin B, Bargeman G, van der Meer A, van Gemert R. J. Mol. Catal. B: Enzym. 2005; 37: 36
  • 22 Kirk O, Christensen MW. Org. Process Res. Dev. 2002; 6: 446
  • 23 Martinelle M, Holmquist M, Hult K. Biochim. Biophys. Acta 1995; 1258: 272
    • 24a de Gonzalo G, Brieva R, Sánchez VM, Bayod M, Gotor V. J. Org. Chem. 2001; 66: 8947
    • 24b de Gonzalo G, Brieva R, Sánchez VM, Bayod M, Gotor V. J. Org. Chem. 2003; 68: 3333
  • 25 Lee LG, Whitesides GM. J. Org. Chem. 1986; 51: 25
    • 26a Chen CS, Fujimoto Y, Girdaukas G, Sih CJ. J. Am. Chem. Soc. 1982; 104: 7294
    • 26b Faber K., Hoenig H. http://biocatalysis.uni-graz.at/enantio/cgi-bin/enantio.pl.
  • 27 Kiyota R, Yamakawa R, Iwabuchi K, Hoshino K, Ando T. Biosci., Biotechnol., Biochem. 2009; 73: 2252
  • 28 Kajiro H, Mitamura S.-i, Mori A, Hiyama T. Synlett 1998; 51
  • 29 Demir AS, Sesenoglu O. Org. Lett. 2002; 4: 2021
  • 30 Ma L.-Y, Liu W.-Z, Shen L, Huang Y.-L, Rong X.-G, Xu Y.-Y, Gao X.-D. Tetrahedron 2012; 68: 2276