Synthesis 2017; 49(04): 810-821
DOI: 10.1055/s-0036-1588663
short review
© Georg Thieme Verlag Stuttgart · New York

Functionalisation of Carbon–Fluorine Bonds with Main Group Reagents

Wenyi Chen
Department of Chemistry, Imperial College London, South Kensington, SW7 2AZ, UK   eMail: m.crimmin@imperial.ac.uk
,
Clare Bakewell
Department of Chemistry, Imperial College London, South Kensington, SW7 2AZ, UK   eMail: m.crimmin@imperial.ac.uk
,
Mark R. Crimmin*
Department of Chemistry, Imperial College London, South Kensington, SW7 2AZ, UK   eMail: m.crimmin@imperial.ac.uk
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 17. Oktober 2016

Accepted after revision: 31. Oktober 2016

Publikationsdatum:
08. Dezember 2016 (online)


Abstract

Synthetic approaches to produce reactive chemical building blocks from fluorinated molecules by the functionalization of carbon–fluorine bonds with main group reagents are reviewed. The reaction types can be categorized as: (i) the formal 1,2-addition of C–F bonds across Si–Si, B–B, or Mg–Mg bonds; (ii) the oxidative addition of C–F bonds to Si(II), Ge(II), and Al(I) centres; and (iii) the dehydrogenative coupling of C–F bonds with Al–H or B–H bonds. Many of the advances have emerged between 2015–2016 and are largely focused upon aromatic substrates that contain sp2 C–F bonds.

1 Introduction

2 C–F Borylation of Aromatic sp2 C–F Bonds

2.1 Rhodium Catalysis

2.2 Nickel Catalysis

3 C–F Alumination of sp2 C–F Aromatic and sp3 C–F Aliphatic Bonds

4 C–F Silylation and Germylation of Aromatic sp2 C–F Bonds

5 C–F Magnesiation of Aromatic sp2 C–F Bonds

6 C–F Silylation and Borylation of Alkenes

7 Conclusions and Future Directions

 
  • References

  • 1 Isanbor C, O’Hagan D. J. Fluorine Chem. 2006; 127: 303
  • 2 Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
  • 3 Hagan DO. J. Fluorine Chem. 2010; 131: 1071
  • 4 O’Hagan D, Rzepa HS. Chem. Commun. 1997; 645
  • 5 O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
  • 6 Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2015; 54: 3216
  • 7 Campbell MG, Ritter T. Chem. Rev. 2015; 115: 612
  • 8 Lentz D, Braun T, Kuehnel MF. Angew. Chem. Int. Ed. 2013; 52: 3328
  • 9 Ahrens T, Kohlmann J, Ahrens M, Braun T. Chem. Rev. 2015; 115: 931
  • 10 Preshlock S, Tredwell M, Gouverneur V. Chem. Rev. 2016; 116: 719
  • 11 Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
  • 12 Fowler RD, Burford III WB, Hamilton JM. Jr, Sweet RG, Weber CE, Kasper JS, Litant I. Ind. Eng. Chem. 1947; 39: 292
  • 13 Shteingarts VD. J. Fluorine Chem. 2007; 128: 797
  • 14 Meier G, Braun T. Angew. Chem. Int. Ed. 2009; 48: 1546
  • 15 Amii H, Uneyama K. Chem. Rev. 2009; 109: 2119
  • 16 Driver TG. Angew. Chem. Int. Ed. 2009; 48: 7974
  • 17 Sun AD, Love JA. Dalton Trans. 2010; 39: 10362
  • 18 Braun T, Wehmeier F. Eur. J. Inorg. Chem. 2011; 613
  • 19 Klahn M, Rosenthal U. Organometallics 2012; 31: 1235
  • 20 Whittlesey MK, Peris E. ACS Catal. 2014; 4: 3152
  • 21 Cho J.-Y, Iverson CN, Smith III MR. J. Am. Chem. Soc. 2000; 122: 12868
  • 22 Lindup RJ, Marder TB, Perutz RN, Whitwood AC. Chem. Commun. 2007; 3664
  • 23 Teltewskoi M, Panetier JA, Macgregor SA, Braun T. Angew. Chem. Int. Ed. 2010; 49: 3947
  • 24 Hartwig JF, Cook KS, Hapke M, Incarvito CD, Fan Y, Webster CE, Hall MB. J. Am. Chem. Soc. 2005; 127: 2538
  • 25 Wei CS, Jiménez-Hoyos CA, Videa MF, Hartwig JF, Hall MB. J. Am. Chem. Soc. 2010; 132: 3078
  • 26 Clot E, Eisenstein O, Jasim N, Macgregor SA, McGrady JE, Perutz RN. Acc. Chem. Res. 2011; 44: 333
  • 27 Macgregor SA, Roe DC, Marshall WJ, Bloch KM, Bakhmutov VI, Grushin VV. J. Am. Chem. Soc. 2005; 127: 15304
  • 28 Kalläne SI, Teltewskoi M, Braun T, Braun B. Organometallics 2015; 34: 1156
  • 29 Guo W.-H, Min Q.-Q, Gu J.-W, Zhang X. Angew. Chem. Int. Ed. 2015; 54: 9075
  • 30 Liu X.-W, Echavarren J, Zarate C, Martin R. J. Am. Chem. Soc. 2015; 137: 12470
  • 31 Niwa T, Ochiai H, Watanabe Y, Hosoya T. J. Am. Chem. Soc. 2015; 137: 14313
  • 32 Zhou J, Kuntze-Fechner MW, Bertermann R, Paul US. D, Berthel JH. J, Friedrich A, Du Z, Marder TB, Radius U. J. Am. Chem. Soc. 2016; 138: 5250
  • 33 Johnson SA, Huff CW, Mustafa F, Saliba M. J. Am. Chem. Soc. 2008; 130: 17278
  • 34 Fahey DR, Mahan JE. J. Am. Chem. Soc. 1977; 99: 2501
  • 35 Arévalo A, Tlahuext-Aca A, Flores-Alamo M, García JJ. J. Am. Chem. Soc. 2014; 136: 4634
  • 36 Schaub T, Radius U. Chem. Eur. J. 2005; 11: 5024
  • 37 Schaub T, Backes M, Radius U. J. Am. Chem. Soc. 2006; 128: 15964
  • 38 Schaub T, Fischer P, Steffen A, Braun T, Radius U, Mix A. J. Am. Chem. Soc. 2008; 130: 9304
  • 39 Yow S, Gates SJ, White AJ. P, Crimmin MR. Angew. Chem. Int. Ed. 2012; 51: 12559
  • 40 Jones WD. Dalton Trans. 2003; 3991
  • 41 Ekkert O, Strudley SD. A, Rozenfeld A, White AJ. P, Crimmin MR. Organometallics 2014; 33: 7027
  • 42 Edelbach BL, Fazlur Rahman AK, Lachicotte RJ, Jones WD. Organometallics 1999; 18: 3170
  • 43 Ekkert O, White AJ. P, Toms H, Crimmin MR. Chem. Sci. 2015; 6: 5617
  • 44 Cui C, Roesky HW, Schmidt H.-G, Noltemeyer M, Hao H, Cimpoesu F. Angew. Chem. Int. Ed. 2000; 39: 4274
  • 45 Crimmin MR, Butler MJ, White AJ. P. Chem. Commun. 2015; 51: 15994
  • 46 Chu T, Boyko Y, Korobkov I, Nikonov GI. Organometallics 2015; 34: 5363
  • 47 Ishii Y, Chatani N, Yorimitsu S, Murai S. Chem. Lett. 1998; 27: 157
  • 48 Murai S, Kakiuchi F, Sekine S, Tanaka Y, Kamatani A, Sonoda M, Chatani N. Nature (London) 1993; 366: 529
  • 49 Jana A, Samuel PP, Tavčar G, Roesky HW, Schulzke C. J. Am. Chem. Soc. 2010; 132: 10164
  • 50 Mallah E, Kuhn N, Maichle-Mossmer C, Steimann M, Stobele M, Zeller K.-P. Z. Naturforsch., B 2009; 64: 1176
  • 51 Kuhn N, Fahl J, Boese R, Henkel G. Z. Naturforsch., B 1998; 53: 881
  • 52 Turner ZR. Chem. Eur. J. 2016; 22: 11461
  • 53 Samuel PP, Singh AP, Sarish SP, Matussek J, Objartel I, Roesky HW, Stalke D. Inorg. Chem. 2013; 52: 1544
  • 54 Bakewell C, White AJ. P, Crimmin MR. J. Am. Chem. Soc. 2016; 138: 12763
  • 55 Green SP, Jones C, Stasch A. Science (Washington, D. C.) 2007; 318: 1754
  • 56 Macgregor SA, McKay D, Panetier JA, Whittlesey MK. Dalton Trans. 2013; 42: 7386
  • 57 Selmeczy AD, Jones WD, Partridge MG, Perutz RN. Organometallics 1994; 13: 522
  • 58 Clot E, Mégret C, Eisenstein O, Perutz RN. J. Am. Chem. Soc. 2009; 131: 7817
  • 59 Evans ME, Burke CL, Yaibuathes S, Clot E, Eisenstein O, Jones WD. J. Am. Chem. Soc. 2009; 131: 13464
  • 60 Overgaard J, Jones C, Stasch A, Iversen BB. J. Am. Chem. Soc. 2009; 131: 4208
  • 61 Bonyhady SJ, Green SP, Jones C, Nembenna S, Stasch A. Angew. Chem. Int. Ed. 2009; 48: 2973
  • 62 Braun T, Wehmeier F, Altenhöner K. Angew. Chem. Int. Ed. 2007; 46: 5321
  • 63 Braun T, Salomon MA, Altenhöner K, Teltewskoi M, Hinze S. Angew. Chem. Int. Ed. 2009; 48: 1818
  • 64 Braun T, Noveski D, Neumann B, Stammler H.-G. Angew. Chem. Int. Ed. 2002; 41: 2745