Synthesis 2017; 49(02): 358-364
DOI: 10.1055/s-0036-1588659
paper
© Georg Thieme Verlag Stuttgart · New York

Redox Switchable Thianthrene Cavitands

Wen Jie Ong
a   Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA   Email: tswager@mit.edu
,
Federico Bertani
b   Department of Chemistry, University of Parma and INSTM RU, Parco Area delle Scienze 17/A, Parma 43124, Italy
,
Enrico Dalcanale
b   Department of Chemistry, University of Parma and INSTM RU, Parco Area delle Scienze 17/A, Parma 43124, Italy
,
Timothy M. Swager*
a   Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA   Email: tswager@mit.edu
› Author Affiliations
Further Information

Publication History

Received: 26 October 2016

Accepted: 02 November 2016

Publication Date:
28 November 2016 (online)


Abstract

A redox activated vase-to-kite conformational change is reported for a new resorcinarene-based cavitand appended with four quinoxaline-fused thianthrene units. In its neutral state, the thianthrene-containing cavitand was shown by 1H NMR to adopt a closed vase conformation. Upon oxidation the electrostatic repulsion among the thianthrene radical cations promotes a kite conformation in the thianthrene-containing cavitand. The addition of acid produced a shoulder feature below 300 nm in the cavitand’s UV-Vis spectrum that we have assigned to the vase-to-kite conformation change. UV-Vis spectroelectrochemical studies of the cavitand revealed a development of a similar shoulder peak consistent with the oxidation-induced vase-to-kite conformation change. To support that the shoulder peak is diagnostic for a vase-to-kite conformation change, a model molecule constituting a single quinoxaline wall of the cavitand was synthesized and studied. As expected UV-Vis spectroelectrochemical studies of the cavitand arm did not display a shoulder peak below 300 nm. The oxidation-induced vase-to-kite conformation is further confirmed by the distinctive upfield shift in 1H chemical shift of the methine signal.

Supporting Information

 
  • References

  • 1 New address: F. Bertani, School of Chemistry, University of Tokyo, Department of Applied Chemistry, Japan.
  • 2 Moran JR, Karbach S, Cram DJ. J. Am. Chem. Soc. 1982; 104: 5826
  • 3 Azov VA, Beeby A, Cacciarini M, Cheetham AG, Diederich F, Frei M, Gimzewski JK, Gramlich V, Hecht B, Jaun B, Latychevskaia T, Lieb A, Lill Y, Marotti F, Schlegel A, Schlittler RR, Skinner PJ, Seiler P, Yamakoshi Y. Adv. Funct. Mater. 2006; 16: 147
    • 4a Bertani F, Riboni N, Bianchi F, Brancatelli G, Sterner ES, Pinalli R, Geremia S, Swager TM, Dalcanale E. Chem. Eur. J. 2016; 22: 3312
    • 4b Pinalli R, Brancatelli G, Pedrini A, Menozzi D, Hernández D, Ballester P, Geremia S, Dalcanale E. J. Am. Chem. Soc. 2016; 138: 8569
    • 5a Zampolli S, Elmi I, Mancarella F, Betti P, Dalcanale E, Cardinali GC, Severi M. Sens. Actuators, B 2009; 141: 322
    • 5b Pinalli R, Dalcanale E. Acc. Chem. Res. 2013; 46: 399
    • 6a Purse BW, Rebek J. Proc. Natl. Acad. Sci. U.S.A. 2005; 102: 10777
    • 6b Hooley RJ, Rebek JJr. Chem. Biol. 2009; 16: 255
  • 8 Pochorovski I, Diederich F. Acc. Chem. Res. 2014; 47: 2096
    • 9a Bianchi F, Bedini A, Riboni N, Pinalli R, Gregori A, Sidisky L, Dalcanale E, Careri M. Anal. Chem. 2014; 86: 10646
    • 9b Riboni N, Trzcinski JW, Bianchi F, Massera C, Pinalli R, Sidisky L, Dalcanale E, Careri M. Anal. Chim. Acta 2016; 905: 79
  • 10 Moran JR, Ericson JL, Dalcanale E, Bryant JA, Knobler CB, Cram DJ. J. Am. Chem. Soc. 1991; 113: 5707
  • 11 Skinner PJ, Cheetham AG, Beeby A, Gramlich V, Diederich F. Helv. Chim. Acta 2001; 84: 2146
  • 12 Frei M, Marotti F, Diederich F. Chem. Commun. 2004; 1362
  • 13 Frei M, Diederich F, Tremont R, Rodriguez T, Echegoyen L. Helv. Chim. Acta 2006; 89: 2040
    • 14a Pochorovski I, Boudon C, Gisselbrecht J.-P, Ebert M.-O, Schweizer WB, Diederich F. Angew. Chem. Int. Ed. 2012; 51: 262
    • 14b Pochorovski I, Ebert M.-O, Gisselbrecht J.-P, Boudon C, Schweizer WB, Diederich F. J. Am. Chem. Soc. 2012; 134: 14702
    • 14c Pochorovski I, Milić J, Kolarski D, Gropp C, Schweizer WB, Diederich F. J. Am. Chem. Soc. 2014; 136: 3852
  • 15 Ruiz-Botella S, Vidossich P, Ujaque G, Vicent C, Peris E. Chem. Eur. J. 2015; 21: 10558
    • 16a Shine HJ, Piette L. J. Am. Chem. Soc. 1962; 84: 4798
    • 16b Rapta P, Kress L, Hapiot P, Dunsch L. Phys. Chem. Chem. Phys. 2002; 4: 4181
  • 17 Kim S, Kwon Y, Lee J.-P, Choi S.-Y, Choo J. J. Mol. Struct. 2003; 655: 451
  • 18 Bock H, Rauschenbach A, Näther C, Kleine M, Havlas Z. Chem. Ber. 1994; 127: 2043
  • 19 Yu H.-h. PhD Dissertation. Massachusetts Institute of Technology; USA: 2003
  • 20 Rabbani MG, Reich TE, Kassab RM, Jackson KT, El-Kaderi HM. Chem. Commun. 2012; 48: 1141
  • 21 Azov VA, Jaun B, Diederich F. Helv. Chim. Acta 2004; 87: 449
  • 22 Boduszek B, Shine HJ. J. Org. Chem. 1988; 53: 51