Synlett 2017; 28(01): 56-63
DOI: 10.1055/s-0036-1588653
account
© Georg Thieme Verlag Stuttgart · New York

Emergence of Life from Trapped Nucleotides? Non-Equilibrium ­Behavior of Oligonucleotides in Thermal Gradients

Emil Dandanell Agerschou
a   Systems Biophysics, Physics Department, Nanosystems Initiative Munich and Center for NanoScience, Ludwig-Maximilians-Universität München, Amalienstraße 54, 80799 München, Germany
b   Graduate School of Quantitative Biosciences (QBM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377 München, Germany   Email: dieter.braun@lmu.de
,
Christof B. Mast*
a   Systems Biophysics, Physics Department, Nanosystems Initiative Munich and Center for NanoScience, Ludwig-Maximilians-Universität München, Amalienstraße 54, 80799 München, Germany
,
Dieter Braun*
a   Systems Biophysics, Physics Department, Nanosystems Initiative Munich and Center for NanoScience, Ludwig-Maximilians-Universität München, Amalienstraße 54, 80799 München, Germany
› Author Affiliations
Further Information

Publication History

Received: 01 August 2016

Accepted after revision: 17 October 2016

Publication Date:
07 December 2016 (online)


Abstract

How life emerged is one of the major questions that remains to be answered. Apart from being of interest for completeness of biology, it is also a very interesting study case from the vantage point of physics. Living organisms are inherently non-equilibrium systems. Since non-equilibrium thermodynamics is still a developing field, the emergence of life is a highly interesting study case. Here we present the progress we have made during the last few years, employing experimental biophysics to capture the mechanisms that could eventually lead to the emergence of life. We show how a simple non-equilibrium system, a thermal gradient, gives rise to a range of relevant phenomena, in particular, polymerization, elongation, and replication of DNA molecules as well as demixing of mixed DNA sequences into sequence-pure hydrogels.

1 Introduction

2 Thermophoresis, the Biased Movement of Molecules in Thermal Gradients

3 The Dynamical Behavior of Accumulated Molecules

4 Overcoming Spiegelman’s Monster

5 Sequence Purification and Oscillations by a Gel-Phase Transition in Thermal Gradients

6 Loose Ends

7 Discussion and Conclusion

 
  • References

  • 1 Rich A In Horizons in Biochemistry . Kasha M, Puhlman B. Academic Press; New York: 1962: 103
  • 2 Crick F. J. Mol. Biol. 1968; 38: 367
  • 3 Orgel L. J. Mol. Biol. 1968; 38: 381
  • 4 Gilbert W. Nature 1986; 319: 618
  • 5 Powner MW, Gerland B, Sutherland JD. Nature 2009; 459: 239
  • 6 Benner SA, Kim H.-J, Carrigan MA. Acc. Chem. Res. 2012; 45: 2025
  • 7 Acevedo OL, Orgel LE. J. Mol. Biol. 1987; 197: 187
  • 8 Orgel LE. Nature 1992; 358: 203
  • 9 Mansy SS, Schrum JP, Krishnamurthy M, Tobé S, Treco DA, Szostak JW. Nature 2008; 454: 122
  • 10 Deck C, Jauker M, Richert C. Nat. Chem. 2011; 3: 603
  • 11 Schrödinger E. What is life?. Cambridge University Press; Cambridge: 1944
  • 12 Baaske P, Weinert FM, Duhr S, Lemke KH, Russell MJ, Braun D. Proc. Natl. Acad. Sci. U.S.A. 2007; 104: 9346
  • 13 Herschy B, Whicher A, Camprubi E, Watson C, Dartnell L, Ward J, Evans JR. G, Lane N. J. Mol. Evol. 2014; 79: 213
  • 14 Keil L, Hartmann M, Lanzmich S, Braun D. Phys. Chem. Chem. Phys. 2016; 18: 20153
  • 15 Ludwig C. Math. Naturwiss. Kl. 1856; 65: 539
  • 16 Soret C. Archives de Genéve 1879; t.II: 48
  • 17 Maxwell JC. Phil. Trans. R. Soc. London 1879; 170: 231
  • 18 Reynolds O. Phil. Trans. R. Soc. London 1879; 170: 727
  • 19 Würger A. Rep. Prog. Phys. 2010; 73: 126601
  • 20 Duhr S, Braun D. Proc. Natl. Acad. Sci. U.S.A. 2013; 103: 19678
  • 21 Ning H, Dhont JK. G, Wiegand S. Langmuir 2008; 24: 2426
  • 22 Würger A. Phys. Rev. Lett. 2009; 102: 078302
  • 23 Stadelmaier D, Köhler W. Macromolecules 2009; 42: 9147
  • 24 Wang Z, Afanasenkau D, Dong M, Huang D, Wiegand S. J. Chem. Phys. 2014; 141: 064904
  • 25 Dhont JK. G, Wiegand S, Duhr S, Braun D. Langmuir 2007; 23: 1674
  • 26 Reichl M, Herzog M, Götz A, Braun D. Phys. Rev. Lett. 2014; 112: 198101
  • 27 Vigolo D, Buzzaccaro S, Piazza R. Langmuir 2010; 26: 7792
  • 28 Eslahian KA, Majee A, Maskos M, Würger A. Soft Matter 2014; 10: 1931
  • 29 Ruckenstein E. J. Colloid Interface Sci. 1981; 83: 77
  • 30 Clusius K, Dickel G. Die Naturwiss. 1938; 26: 546
  • 31 Mast CB, Schink S, Gerland U, Braun D. Proc. Natl. Acad. Sci. U.S.A. 2013; 110: 8030
  • 32 Mast CB, Braun D. Phys. Rev. Lett. 2010; 104: 188102
  • 33 Kreysing M, Keil L, Lanzmich S, Braun D. Nat. Chem. 2015; 7: 203
  • 34 Martin W, Baross J, Kelley D, Russell MJ. Nat. Rev. Microbiol. 2008; 6: 805
  • 35 Mills DR, Peterson RL, Spiegelman S. Proc. Natl. Acad. Sci. U.S.A. 1967; 58: 217
  • 36 Oehlenschläger F, Eigen M. Origins Life Evol. Biosphere 1997; 27: 437
  • 37 Lincoln TA, Joyce GF. Science 2009; 323: 1229
  • 38 Vaidya N, Manapat ML, Chen IA, Xulvi-Brunet R, Hayden EJ, Lehman N. Nature 2012; 491: 72
  • 39 Pross A. J. Syst. Chem. 2011; 2: 1
  • 40 Morasch M, Braun D, Mast CB. Angew. Chem. 2016; 128: 6788
  • 41 Soai K, Shibata T, Morioka H, Choji K. Nature 1995; 378: 767
  • 42 Blackmond DG. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 5732
  • 43 Blackmond DG, Klussmann M. Chem. Commun. 2007; 3990
  • 44 Eigen M, Schuster P. Naturwiss. 1977; 65: 541
  • 45 Colomb-Delsuc M, Mattia E, Sadownik JW, Otto S. Nat. Commun. 2015; 6: 7427
  • 46 van Roekel HW. H, Rosier BJ. H. M, Meijer LH. H, Hilbers PA. J, Markvoort AJ, Huck WT. S, de Greef TF. A. Chem. Soc. Rev. 2015; 44: 7465
  • 47 Sadownik JW, Mattia E, Nowak P, Otto S. Nat. Chem. 2016; 8: 264
  • 48 Knebel J, Weber MF, Krüger T, Frey E. Nat. Commun. 2015; 6: 6977
  • 49 Jimenez JI, Xulvi-Brunet R, Campbell GW, Turk-MacLeod R, Chen IA. Proc. Natl. Acad. Sci. U.S.A. 2013; 110: 14984
  • 50 Ichihashi N, Usui K, Kazuta Y, Sunami T, Matsuura T, Yomo T. Nat. Commun. 2013; 4: 1
  • 51 Pressman A, Blanco C, Chen IA. Curr. Biol. 2015; 25: R953