Synlett 2017; 28(01): 98-102
DOI: 10.1055/s-0036-1588649
cluster
© Georg Thieme Verlag Stuttgart · New York

The Abiotic Oxidation of Organic Acids to Malonate

Gavin B. Ricea, Jayasudhan R. Yerabolub, Ramanarayanan Krishnamurthyb, Greg Springsteen*a
  • aFurman University, 3300 Poinsett Hwy, Greenville SC 29613, USA   Email: greg.springsteen@furman.edu
  • bThe Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
Further Information

Publication History

Received: 16 August 2016

Accepted after revision: 19 October 2016

Publication Date:
07 November 2016 (eFirst)

Abstract

The nucleophilicity of the α-carbon of malonate, coupled with its potential for subsequent decarboxylation, makes it an intriguing building block in prebiotic chemical scenarios. In this work, a variety of citric acid cycle (TCA) intermediates is shown to unexpectedly generate malonate in an oxidizing environment. The reactions are facile in aqueous solution containing hydrogen peroxide, a prevalent abiotic oxidant. In modern metabolism, malonate is a carbon source for acetyl-CoA. Additionally, its thioester is the substrate for the biosynthesis of both fatty acids and polyketides. The data presented herein may hint at how an early link was formed between polyketide, fatty acid, and TCA pathways.

Supporting Information

 
  • References and Notes

  • 1 Blaquiere N, Shore DG, Rousseaux S, Fagnou K. J. Org. Chem. 2009; 74: 6190
  • 2 Chen H, Harrison PH. M. Can. J. Chem. 2002; 80: 601
  • 3 Ryu Y, Scott AI. Tetrahedron Lett. 2003; 44: 7499
  • 4 Kim YS. J. Biochem. Mol. Biol. 2002; 35: 443
  • 5 Chan YA, Podevels AM, Kevany BM, Thomas MG. Nat. Prod. Rep. 2009; 26: 90
  • 6 Shen B. Curr. Opin. Chem. Biol. 2003; 285
  • 7 Cruz-Castañeda J, Negrón-Mendoza A, Frías D, Colín-García M, Heredia A, Ramos-Bernal S, Villafañe-Barajas S. J. Radioanal. Nucl. Chem. 2015; 304: 219
  • 8 Meléndez-Hevia E, Waddell TG, Cascante M. J. Mol. Evol. 1996; 43: 293
  • 9 Waddell TG, Geevarghese SK, Henderson BS, Pagni RM, Newton JS. Origins Life Evol. Biospheres 1989; 19: 603
  • 10 Zhang XV, Martin ST. J. Am. Chem. Soc. 2006; 128: 16032
  • 11 Cody GD, Boctor NZ, Hazen RM, Brandes JA, Morowitz HJ, Yoder HS. Geochim. Cosmochim. Acta 2001; 65: 3557
  • 12 Ragukumar G, Andal P, Murugavelu M, Lavanya C, Ramachandran MS. J. Mol. Catal. A: Chem. 2014; 390: 22
  • 13 Naidja A, Siffert B. Clay Miner. 1990; 25: 27
  • 14 Wächtershäuser G. Proc. Natl. Acad. Sci. U.S.A. 1990; 87: 200
  • 15 Ross DS. Origins Life Evol. Biospheres 2007; 37: 61
  • 16 Eschenmoser A. Chem. Biodiversity 2007; 4: 554
  • 17 Smith E, Morowitz HJ. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 13168
  • 18 Guzman MI, Martin ST. Astrobiology 2009; 9: 833
  • 19 Smith ML, Claire MW, Catling DC, Zahnle KJ. Icarus 2014; 231: 51
  • 20 Carrier BL, Kounaves SP. Geophys. Res. Lett. 2015; 3739
  • 21 Hecht MH, Kounaves SP, Quinn RC, West SJ, Young SM. M, Ming DW, Catling DC, Clark BC, Boynton WV, Hoffman J, Deflores LP, Gospodinova K, Kapit J, Smith PH. Science 2009; 325: 64
  • 22 Jackson WA, Davila AF, Sears DW. G, Coates JD, McKay CP, Brundrett M, Estrada N, Bohlke JK. Earth Planet. Sci. Lett. 2015; 430: 470
  • 23 Leshin LA, Mahaffy PR, Webster CR, Cabane M, Coll P, Conrad PG, Archer PD. Jr, Atreya SK, Brunner AE, Buch A, Eigenbrode JL, Flesch GJ, Franz HB, Freissinet C, Glavin DP, McAdam AC, Miller KE, Ming DW, Morris RV, Navarro-González R, Niles PB, Owen T, Pepin RO, Squyres S, Steele A, Stern JC, Summons RE, Sumner DY, Sutter B, Szopa C, Teinturier S, Trainer MG, Wray JJ, Grotzinger JP. MSL Science Team, Science 2013; 341: 1238937
  • 24 Navarro-González R, Vargas E, De La Rosa J, Raga AC, McKay CP. J. Geophys. Res.: Planets 2010; 115: E12010
  • 25 Catling DC, Claire MW, Zahnle KJ, Quinn RC, Clark BC, Hecht MH, Kounaves S. J. Geophys. Res.: Planets 2010; 115: E00E11
  • 26 Encrenaz T, Bezard B, Greathouse TK, Richter MJ, Lacy JH, Atreya SK, Wong AS, Lebonnois S, Lefevre F, Forget F. Icarus 2004; 170: 424
  • 27 Atreya SK, Wong A.-S, Renno NO, Farrell WM, Delory GT, Sentman DD, Cummer SA, Marshall JR, Rafkin SC. R, Catling DC. Astrobiology 2006; 6: 439
  • 28 Encrenaz T, Greathouse TK, Lefevre F, Atreya SK. Planet. Space Sci. 2012; 68: 3
  • 29 Borda MJ, Elsetinow AR, Schoonen MA, Strongin DR. Astrobiology 2001; 1: 283
  • 30 Liang M.-C, Hartman H, Kopp RE, Kirschvink JL, Yung YL. Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 18896
  • 31 Carlson RW, Anderson MS, Johnson RE, Smythe WD, Hendrix AR, Barth CA, Soderblom LA, Hansen GB, McCord TB, Dalton JB, Clark RN, Shirley JH, Ocampo AC, Matson DL. Science 1999; 283: 2062
  • 32 Borda MJ, Elsetinow AR, Strongin DR, Schoonen MA. Geochim. Cosmochim. Acta 2003; 67: 935
  • 33 Lawless JG, Zeitman B, Pereira WE, Summons RE, Duffield AM. Nature (London, U.K.) 1974; 251: 40
  • 34 Cooper G, Reed C, Nguyen D, Carter M, Wang Y. Proc. Natl. Acad. Sci. U.S.A. 2011; 108: 14015
  • 35 Zeitman B, Chang S, Lawless JG. Nature (London, U.K.) 1974; 251: 42
  • 36 Yuen GU, Lawless JG, Edelson EH. J. Mol. Evol. 1981; 17: 43
  • 37 Allen WV, Ponnamperuma C. Biosystems 1967; 1: 24
  • 38 Bunton CA. Nature (London, U.K.) 1949; 163: 444
  • 39 Fedotcheva NI, Sokolov AP, Kondrashova MN. Free Radic. Biol. Med. 2006; 41 (01) 56
  • 40 Holleman MA. F. Recl. Trav. Chim. Pays-Bas Belg. 1904; 23: 169
  • 41 Siegel B, Lanphear J. J. Org. Chem. 1979; 44: 942
  • 42 Vlessis AA, Bartos D, Trunkey D. Biochem. Biophys. Res. Commun. 1990; 170: 1281
  • 43 Huang SJ. M. B, Keller PJ, Floss H. J. Am. Chem. Soc. 1986; 108: 1100
  • 44 Hulme AC, Arthington W. J. Exp. Bot. 1953; 4: 129
  • 45 Prue JE. J. Chem. Soc. 1952; 2331