Synthesis 2017; 49(05): 981-986
DOI: 10.1055/s-0036-1588630
short review
© Georg Thieme Verlag Stuttgart · New York

Iodoaminations of Alkenes

Pushpak Mizar
School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff CF10 3AT, UK   Email: [email protected]
,
Thomas Wirth*
School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff CF10 3AT, UK   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 22 September 2016

Accepted: 26 September 2016

Publication Date:
03 November 2016 (online)


Abstract

The activation of alkenes and their subsequent functionalization is a frequently used methodology in synthetic chemistry. This review highlights recent iodine-mediated aminations and elaborates on the various strategies to bring about regio- or stereoselective transformations.

1 Introduction

2 Strategies and Mechanisms

3 N-Functionalization of Alkenes

4 Enantioselective Iodoaminations

5 Conclusions and Outlook

 
  • References

  • 1 Bougault MJ. R. C. R. Hebd. Seances Acad. Sci. 1904; 139: 864
    • 2a Qiu J, Silverman RB. J. Med. Chem. 2000; 43: 706
    • 2b Pors K, Shnyder SD, Teesdale-Spittle PH, Hartley JA, Zloh M, Searcey M, Patterson LH. J. Med. Chem. 2006; 49: 7013
    • 2c Kuang Y, Balakrishnan K, Gandhi V, Peng X. J. Am. Chem. Soc. 2011; 133: 19278

      Selected reviews:
    • 3a French AN, Bissmire S, Wirth T. Chem. Soc. Rev. 2004; 33: 354
    • 3b Chen G, Ma S. Angew. Chem. 2010; 122: 8484 ; Angew. Chem. Int. Ed. 2010, 49, 8306
    • 3c Castellanos Fletcher AS. P. Chem. Eur. J. 2011; 17: 5766
    • 3d Tan CK, Zhou L, Yeung Y.-Y. Synlett 2011; 1335
    • 4a Hennecke U. Chem. Asian J. 2012; 7: 456
    • 4b Haas J, Piguel S, Wirth T. Org. Lett. 2002; 4: 297
    • 4c Haas J, Bissmire S, Wirth T. Chem. Eur. J. 2005; 11: 5777

      For reviews of halocyclizations, see:
    • 5a Bartlett PA In Asymmetric Synthesis . Vol. 3. Morrison JD. Academic Press; Orlando: 1984: 411
    • 5b Cardillo G, Orena M. Tetrahedron 1990; 46: 3321
    • 5c Harding KE, Tiner TH. Comprehensive Organic Synthesis . Vol. 4. Trost BM, Fleming I. Pergamon; New York: 1991: 363
    • 7a Harding KE, Marman TH, Nam D. Tetrahedron 1988; 44: 5605
    • 7b Zefirov NS. Tetrahedron 1977; 33: 2719
    • 7c Rychnowsky SD, Bartlett PA. J. Am. Chem. Soc. 1981; 103: 3963
    • 8a Olah GA, Bollinger JM. J. Am. Chem. Soc. 1967; 89: 4744
    • 8b Olah GA, Bollinger JM. J. Am. Chem. Soc. 1968; 90: 947
    • 8c Olah GA, Bollinger JM, Brinich J. J. Am. Chem. Soc. 1968; 90: 2587
    • 9a Brown RS, Nagorski RW, Bennet AJ, McClung RE. D, Aarts GH. M, Klobukowski M, McDonald R, Santarsiero BD. J. Am. Chem. Soc. 1994; 116: 2448
    • 9b Neverov AA, Brown RS. J. Org. Chem. 1996; 61: 962
    • 9c Brown RS. Acc. Chem. Res. 1997; 30: 131
    • 9d Denmark SE, Kuester WE, Burk MT. Angew. Chem. 2012; 124: 11098 ; Angew. Chem. Int. Ed. 2012, 51, 10938
  • 10 Cardillo G, Orena M, Porzi G, Sandri S. J. Chem. Soc., Chem. Commun. 1982; 1308
  • 11 Bongini A, Cardillo G, Orena M, Sandri S, Tomasini C. J. Org. Chem. 1986; 51: 4905
  • 12 Knapp S, Sankar Lal G, Sahai D. J. Org. Chem. 1986; 51: 380
    • 13a Williams DR, Brown DL, Benbow JW. J. Am. Chem. Soc. 1989; 111: 1923
    • 13b Williams DR, Osterhout MH, McGill JM. Tetrahedron Lett. 1989; 30: 1327
    • 14a Davies SG, Nicholson RL, Price PD, Roberts PM, Russell AJ, Savory ED, Smith AD, Thomson JE. Tetrahedon: Asymmetry 2009; 20: 758
    • 14b Davies SG, Lee JA, Roberts PM, Thomson JE, West CJ. Tetrahedron 2012; 68: 4302
    • 14c Brock EA, Davies SG, Lee JA, Roberts PM, Thomson JE. Org. Lett. 2012; 14: 4278
  • 15 Aida T, Legault R, Dugat D, Durst T. Tetrahedron Lett. 1979; 20: 4993
  • 16 Knapp S, Rodriques KE, Levorse AT, Omaf RM. Tetrahedron Lett. 1985; 26: 1803
  • 17 Bartlett PA. Tetrahedron 1980; 36: 2
  • 18 Takahata H, Takamatsu T, Mozumi M, Chen Y.-S, Yamazaki T, Aoe K. J. Chem. Soc., Chem. Commun. 1987; 1627
  • 19 Diaba F, Bonjoch J. Chem. Commun. 2011; 47: 3251
    • 20a Corey EJ, Shibasaki M, Knolle J. Tetrahedron Lett. 1977; 18: 1625
    • 20b Hirama M, Uei M. Tetrahedron Lett. 1982; 23: 5307
    • 20c Tamaru Y, Mizutani M, Furukawa Y, Kawamura S, Yoshida Z, Yanagi K, Minobe M. J. Am. Chem. Soc. 1984; 106: 1079
    • 20d Murata S, Suzuki T. Chem. Lett. 1987; 849
    • 20e Kitagawa O, Hanano T, Hirata T, Inoue T, Taguchi T. Tetrahedron Lett. 1992; 33: 1299
    • 20f Hirama M, Iwashita M, Yamazaki Y, Ito S. Tetrahedron Lett. 1984; 25: 4963
    • 20g Biloski AJ, Wood RD, Ganem B. J. Am. Chem. Soc. 1982; 104: 3233
    • 20h Kitagawa O, Taguchi T. Synlett 1999; 1191
    • 21a Kitagawa O, Suzuki T, Taguchi T. Tetrahedron Lett. 1997; 38: 8371
    • 21b Kitagawa O, Suzuki T, Taguchi T. J. Org. Chem. 1998; 63: 4842
  • 22 Mizar P, Burrelli A, Günther E, Softje M, Farooq U, Wirth T. Chem. Eur. J. 2014; 20: 13113
  • 23 Cheyenne S, Brindle CS, Yeung CS, Jacobsen EN. Chem. Sci. 2013; 4: 2100
  • 24 Kim KK, Lee YJ, Kim JK, Sung DK. Chem. Commun. 2002; 1116
    • 25a Cai Y, Liu X, Hui Y, Jiang J, Wang W, Chen W, Lin L, Feng X. Angew. Chem. 2010; 122: 6296 ; Angew. Chem. Int. Ed. 2010, 49, 6160
    • 25b Cai Y, Liu X, Jiang J, Chen W, Lin L, Feng X. J. Am. Chem. Soc. 2011; 133: 5636
    • 25c Cai Y, Liu X, Li J, Chen W, Wang W, Lin L, Feng X. Chem. Eur. J. 2011; 17: 14916