CC BY-ND-NC 4.0 · SynOpen 2017; 01(01): 0117-0120
DOI: 10.1055/s-0036-1588573
letter
Copyright with the author

Rapid Transformation of Alkyl Halides into Symmetrical Disulfides Using Sodium Sulfide and Carbon Disulfide

Ishani Bhaumik
,
Anup Kumar Misra*
Further Information

Publication History

Received: 06 June 2017

Accepted after revision: 29 August 2017

Publication Date:
14 September 2017 (online)


Abstract

An efficient one-pot reaction has been developed for the preparation of symmetrical disulfide derivatives directly from alkyl halides by reaction with a combination of sodium sulfide and carbon disulfide without requirement for any catalyst.

 
  • References

    • 1a Karchmer JH. The Analytical Chemistry of Sulfur and Its Compounds . Wiley; New York: 1972
    • 1b Oae S. Organic Sulfur Chemistry: Structure and Mechanism . CRC Press; Boca Raton, FL: 1991
    • 1c Johnson JR. Bruce WF. Dutcher JD. J. Am. Chem. Soc. 1943; 65: 2005
    • 2a Bodanszky M. Principles of Peptide Synthesis . Springer; Berlin: 1984. Chap. 4, 119-157
    • 2b Patai S. Chemistry of the Thiol Groups . Wiley & Sons; New York: 1974: 785
    • 3a Saito G. Swanson JA. Lee KD. Adv. Drug Delivery Rev. 2003; 55: 199
    • 3b Lee MH. Sessler JL. Kim JS. Acc. Chem. Res. 2015; 48: 2935
    • 4a Graf TA. Yoo J. Brummett AB. Lin R. Wohlgenannt M. Quinn D. Bowden NB. Macromolecules 2012; 45: 8193
    • 4b Gyarmati B. Némethy Á. Szilágui Eur. Polym. J. 2013; 49: 1268
    • 4c Zelikin AN. Quinn JF. Caruso F. Biomacromolecules 2006; 7: 27
    • 5a Trivedi MV. Laurence JS. Siahaan TJ. Curr. Protein Pept. Sci. 2009; 10: 614
    • 5b Oka OB. V. Bulleid NJ. Biochim. Biophys. Acta, Mol. Cell Res. 2013; 1833: 2425
    • 6a Marshall CJ. Agarwal N. Kalia J. Grosskopf VA. McGrath NA. Abbott NL. Raines RT. Shusta EV. Bioconjugate Chem. 2013; 24: 1634
    • 6b van Vught R. Pieters RJ. Breukink E. Comput. Struct. Biotechnol. J. 2014; 9: e201402001
    • 7a Góngora-benitez M. Tulla-Puche J. Albericio F. Chem. Rev. 2014; 114: 901
    • 7b Brady RM. Baell JB. Norton RS. Mar. Drugs 2013; 11: 2293
    • 8a Adhikari B. De D. Maiti S. Prog. Polym. Sci. 2000; 25: 909
    • 8b Sonavane SU. Chidambaram M. Almog J. Sasson Y. Tetrahedron Lett. 2007; 48: 6048
    • 9a Iranpoor N. Firouzabadi H. Pourali AR. Tetrahedron 2002; 58: 5179
    • 9b Silveira CC. Mendes SR. Tetrahedron Lett. 2007; 48: 7469
    • 9c Akdag A. Webb T. Worley SD. Tetrahedron Lett. 2006; 47: 3509
    • 9d Olah GA. Arvanaghi M. Vankar YD. Synthesis 1979; 721
    • 9e Mckillop A. Koyuncu D. Krief A. Dumont W. Renier P. Trabelsi M. Tetrahedron Lett. 1990; 31: 5007
    • 9f Fujihara H. Mima H. Ikemori M. Furukawa N. J. Am. Chem. Soc. 1991; 113: 6337
    • 9g Kirihara M. Okubo K. Uchiyama T. Kato Y. Ochiai Y. Matsushita S. Hatano A. Kanamori K. Chem. Pharm. Bull. 2004; 52: 625
    • 9h Ali MH. McDermott M. Tetrahedron Lett. 2002; 43: 6271
    • 9i Iranpoor N. Zeynizadeh B. Synthesis 1999; 49
    • 9j Sato T. Otera J. Nozaki H. Tetrahedron Lett. 1990; 31: 3591
    • 9k Misra AK. Agnihotri G. Synth. Commun. 2004; 34: 1079
    • 9l Kirihara M. Asai Y. Ogawa S. Noguchi T. Hatano A. Hirai Y. Synthesis 2007; 3286
    • 9m Hosseinpoor F. Golchoubian H. Catal. Lett. 2006; 111: 165
    • 9n Lenardao EJ. Lara RG. Silva MS. Raquel G. Jacob RG. Perin G. Tetrahedron Lett. 2007; 48: 7668
    • 9o Firouzabadi H. Mottghinejad E. Seddighi M. Synthesis 1989; 378
  • 10 Sergio LS. Pardini VL. Viertler H. Synth. Commun. 1990; 20: 393
  • 11 Rao KR. Kumar HM. S. Bioorg. Med. Chem. Lett. 1991; 1: 507
  • 12 Meshram HM. Tetrahedron Lett. 1993; 34: 2521
    • 13a Sonavane SU. Chidambaram M. Almog J. Sasson Y. Tetrahedron Lett. 2007; 48: 6048
    • 13b Wang J.-X. Cui W. Hu Y. Synth. Commun. 1995; 25: 3573
    • 14a Abbasi M. Mohammadizadeh MR. Moosavi H. Saeedi N. Synlett 2015; 26: 1185
    • 14b Firouzabadi H. Iranpoor N. Abbasi M. Tetrahedron Lett. 2010; 51: 508
    • 15a Sinha S. Ilankumaran P. Chandrasekaran S. Tetrahedron 1999; 55: 14769
    • 15b Iranpoor N. Firouzabadi H. Khalili D. Tetrahedron Lett. 2012; 53: 6913
  • 16 Prabhu KR. Ramesha AR. Chandrasekaran S. J. Org. Chem. 1995; 60: 7142
  • 17 Devan N. Sridhar PR. Prabhu KR. Chandrasekaran S. J. Org. Chem. 2002; 67: 9417
  • 18 Sureshkumar D. Gunasundari T. Ganesh V. Chandrasekaran S. J. Org. Chem. 2006; 72: 2106
  • 20 Jana M. Misra AK. J. Org. Chem. 2013; 78: 2680
  • 21 Liu C.-Y. Chen H.-L. Ko C.-M. Chen C.-T. Tetrahedron 2011; 67: 872
  • 22 Adinolfi M. Capasso D. Gaetano SD. Iadonisi A. Leone L. Pastore A. Org. Biomol. Chem. 2011; 9: 6278
  • 23 Typical experimental procedure for the preparation of symmetrical dialkyl disulfides: To a solution of Na2S·9H2O (1.0 mmol) in DMF (2 mL) was added CS2 (1.0 mmol) at room temperature. The alkyl halide (1.0 mmol) was added to the dark-red reaction mixture at room temperature with vigorous stirring. The color of the reaction mixture changed from red to yellow. The reaction mixture was stirred for the appropriate time (Table 2), then poured into water and extracted with Et2O (2 × 25 mL). The combined organic layers were dried over Na2SO4, filtered and concentrated under reduced pressure. The crude product was purified over SiO2 using hexane–EtOAc (15:1) as eluant to give the pure dialkyl disulfide derivative (Table 2)
  • 24 Spectroscopic data of novel products:Di[2-O-(2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl)ethyl] Disulfide (11): Yield: 733 mg (90%); Colorless oil; 1H NMR (500 MHz, CDCl3): δ = 5.18 (t, J = 7.5 Hz, 2 H), 5.08 (t, J = 9.5 Hz, 2 H), 4.97 (m, 2 H), 4.55 (d, J = 9.0 Hz, 2 H), 4.26 (dd, J = 4.5, 8.0 Hz, 2 H), 4.14–3.95 (m, 4 H), 3.89–3.60 (m, 4 H), 2.96–2.71 (m, 4 H), 2.09, 2.06, 2.02, 2.00 (4 × s, 24 H); 13C NMR (125 MHz, CDCl3): δ = 170.2 (2 C), 169.9 (2 C), 169.0 (2 C), 168.9 (2 C), 100.7 (2 C), 72.7 (2 C), 72.6 (2 C), 71.8 (2 C), 69.6 (4 C), 67.6 (2 C), 61.7 (2 C), 38.3 (2 C), 20.5 (8 C); HRMS (ESI): m/z [M+Na]+ calcd. for C32H46O20S2: 837.1922; found: 837.1916.Di[2-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)ethyl] Disulfide (12): Yield: 700 mg (86%); Colorless oil; 1H NMR (500 MHz, CDCl3): δ = 5.39-5.31 (m, 2 H), 5.20–5.13 (m, 2 H), 5.05–4.95 (m, 2 H), 4.50 (d, J = 8.0 Hz, 2 H), 4.19–4.09 (m, 4 H), 4.05–3.89 (m, 2 H), 3.81–3.61 (m, 2 H), 2.91–2.71 (m, 4 H), 2.16, 2.07, 2.05, 1.98 (4 × s, 24 H); 13C NMR (125 MHz, CDCl3): δ = 170.1 (2 C), 170.0 (2 C), 169.9 (2 C), 169.2 (2 C), 101.4 (2 C), 70.8 (4 C), 70.7 (2 C), 68.7 (4 C), 66.9 (2 C), 61.1 (2 C), 20.7 (8 C); HRMS (ESI): m/z [M+Na]+ calcd. for C32H46O20S2: 837.1922; found: 837.1917.Di-[2-O-(2,3,4-tri-O-acetyl-α-l-rhamnopyranosyl)ethyl] Disulfide (13): Yield: 594 mg (85%); Colorless oil; 1H NMR (500 MHz, CDCl3): δ = 5.31–5.19 (m, 4 H), 5.05 (t, J = 9.5 Hz, 2 H), 4.76 (s, 2 H), 3.98–3.88 (m, 2 H), 3.85–3.69 (m, 4 H), 2.98–2.81 (m, 4 H), 2.15, 2.08, 1.98 (3 × s, 18 H), 1.22 (d, J = 6.0 Hz, 6 H); 13C NMR (125 MHz, CDCl3): δ = 169.9 (2 C), 169.8 (2 C), 169.7 (2 C), 97.5 (2 C), 70.9 (2 C), 70.6 (2 C), 69.7 (2 C), 69.0 (2 C), 66.6 (2 C), 66.3 (2 C), 38.2 (2 C), 20.8 (6 C), 17.4 (2 C); HRMS (ESI): m/z [M+Na]+ calcd. for C28H42O16S2: 721.1812; found: 721.1806