Synlett 2017; 28(16): 2051-2056
DOI: 10.1055/s-0036-1588514
synpacts
© Georg Thieme Verlag Stuttgart · New York

Iridium-Catalyzed Asymmetric Umpolung Allylation of N-Fluor­enyl Imines to Prepare 1,4-Disubstituted Homoallylic Amines

Liqiang Wan
,
Lan Tian
,
Jie Liu
,
Dawen Niu*
Financial support of this work comes from the Youth 1000 Talent Plan Program, the National Natural Science Foundation of China (Nos. 21602145, 81573290, U1603123), and West China Hospital, SCU (start-up funding).
Further Information

Publication History

Received: 12 June 2017

Accepted after revision: 27 June 2017

Publication Date:
08 August 2017 (eFirst)

Abstract

The discovery and development of an Ir-catalyzed asymmetric umpolung allylation of imines is discussed here. This method produces 1,4-disubstituted homoallylic amines, a class of compounds that are difficult to access by conventional methods. This reaction proceeds through a sequence involving an allylation and a 2-aza-Cope rearrangement event. The unique mechanistic feature of this reaction could be the reason for its broad substrate scope. The products of this reaction are useful intermediates for various bioactive and natural products. Besides its immediate synthetic utility, we expect this transformation to inspire the development of other umpolung functionalizations of imines and Ir-catalyzed asymmetric allylic substitution (AAS) reactions.

1 Introduction

2 Reaction Discovery

3 Substrate Scope

4 Conclusion

 
  • References


    • For excellent reviews in this topic, see:
    • 1a Helmchen G. Dahnz A. Dübon P. Schelwies M. Weihofen R. Chem. Commun. 2007; 675
    • 1b Helmchen G. In Iridium Complexes in Organic Synthesis . Oro LA. Claver C. Wiley-VCH; Weinheim, Germany: 2009: 211
    • 1c Hartwig JF. Stanley LM. Acc. Chem. Res. 2010; 43: 1461
    • 1d Hartwig JF. Pouy MJ. Top. Organomet. Chem. 2011; 34: 169
    • 1e Liu W.-B. Xia J.-B. You S.-L. Top. Organomet. Chem. 2012; 38: 155
    • 1f Tosatti P. Nelson A. Marsden SP. Org. Biomol. Chem. 2012; 10: 3147

    • For recent examples, see:
    • 1g Zhan M. Li R.-Z. Mou Z.-D. Cao C.-G. Liu J. Chen Y.-W. Niu D. ACS Catal. 2016; 6: 3381
    • 1h Huang L. Dai L.-X. You S.-L. J. Am. Chem. Soc. 2016; 138: 5793
    • 1i Ye K.-Y. Cheng Q. Zhuo C.-X. You S.-L. Angew. Chem. Int. Ed. 2016; 55: 8113
    • 1j Jiang X. Chen W. Hartwig JF. Angew. Chem. Int. Ed. 2016; 55: 5819
    • 1k Liu W.-B. Reeves CM. Virgil SC. Stoltz BM. J. Am. Chem. Soc. 2013; 135: 10626
    • 1l Liu W.-B. Reeves CM. Stoltz BM. J. Am. Chem. Soc. 2013; 135: 17298
  • 2 Takeuchi R. Kashio M. Angew. Chem. Int. Ed. Engl. 1997; 36: 263
  • 3 Janssen JP. Helmchen G. Tetrahedron Lett. 1997; 38: 8025
    • 4a Chen G. Deng Y. Gong L.-Z. Mi A.-Q. Cui X. Jiang Y.-Z. Choi MC. K. Chan AS. C. Tetrahedron: Asymmetry 2001; 12: 1567
    • 4b Tao Z.-L. Zhang W.-Q. Chen D.-F. Adele A. Gong L.-Z. J. Am. Chem. Soc. 2013; 135: 9255
    • 4c Nakoji M. Kanayama T. Okino T. Takemoto Y. Org. Lett. 2001; 3: 3329
    • 4d Mukherjee S. List B. J. Am. Chem. Soc. 2007; 129: 11336
    • 4e Jiang G.-X. List B. Angew. Chem. Int. Ed. 2011; 50: 9471

    • For other example, see:
    • 4f Chen D.-F. Han Z.-Y. Zhou X.-L. Gong L.-Z. Acc. Chem. Res. 2014; 47: 2365
    • 4g Yang Z.-P. Zhang W. You S.-L. J. Org. Chem. 2014; 79: 7785 ; and references therein
    • 5a Krautwald S. Sarlah D. Schafroth MA. Carreira EM. Science 2013; 340: 1065
    • 5b Krautwald S. Carreira EM. J. Am. Chem. Soc. 2017; 139: 5627
    • 6a Liu W.-B. He H. Dai L.-X. You S.-L. Org. Lett. 2008; 10: 1815
    • 6b Wu Q.-F. Zheng C. You S.-L. Angew. Chem. Int. Ed. 2012; 51: 1680
    • 6c Zhuo C.-X. Liu W.-B. Wu Q.-F. You S.-L. Chem. Sci. 2012; 3: 205
    • 6d Wu Q.-F. Liu W.-B. Zhuo C.-X. Rong Z.-Q. Ye K.-Y. You S.-L. Angew. Chem. Int. Ed. 2011; 50: 4455
    • 6e Cheng Q. Wang Y. You S.-L. Angew. Chem. Int. Ed. 2016; 55: 3496
    • 6f Yang Z.-P. Wu Q.-F. You S.-L. Angew. Chem. Int. Ed. 2014; 53: 6986
    • 6g Yang Z.-P. Wu Q.-F. Shao W. You S.-L. J. Am. Chem. Soc. 2015; 137: 15899

      For excellent reviews in CADA chemistry, see:
    • 7a Zheng C. You S.-L. Chem 2016; 1: 830
    • 7b Zhuo C.-X. Zhang W. You S.-L. Angew. Chem. Int. Ed. 2012; 51: 12662
    • 7c Zhuo C.-X. Zheng C. You S.-L. Acc. Chem. Res. 2014; 47: 2558
    • 7d Wu W.-T. Zhang L. You S.-L. Chem. Soc. Rev. 2016; 45: 1570
    • 7e Liang X.-W. Zheng C. You S.-L. Chem. Eur. J. 2016; 22: 11918

    • for selected examples of CADA chemistry that are not initiated by Ircatalyzed AAS reaction, see
    • 7f Zheng C. Zhuo C.-X. You S.-L. J. Am. Chem. Soc. 2014; 136: 16251
    • 7g Xu R.-Q. Gu Q. Wu W.-T. Zhao Z.-A. You S.-L. J. Am. Chem. Soc. 2014; 136: 15469
    • 7h Wang S.-G. Yin Q. Zhuo C.-X. You S.-L. Angew. Chem. Int. Ed. 2015; 54: 647
    • 7i Liu C. Yi J.-C. Zheng Z.-B. Tang Y. Dai L.-X. You S.-L. Angew. Chem. Int. Ed. 2016; 55: 751
    • 8a Liang X. Jiang S.-Z. Wei K. Yang Y.-R. J. Am. Chem. Soc. 2016; 138: 2560
    • 8b Jiang S.-Z. Zeng X.-Y. Liang X. Lei T. Wei K. Yang Y.-R. Angew. Chem. Int. Ed. 2016; 55: 4044
  • 9 Kiener CA. Shu C. Incarvito C. Hartwig JF. J. Am. Chem. Soc. 2003; 125: 14272
    • 10a Liu W.-B. He H. Dai L.-X. You S.-L. Synthesis 2009; 2076
    • 10b Liu W.-B. Zheng C. Zhuo C.-X. Dai L.-X. You S.-L. J. Am. Chem. Soc. 2012; 134: 4812
    • 11a Defieber C. Ariger MA. Moriel P. Carreira EM. Angew. Chem. Int. Ed. 2007; 46: 3139
    • 11b Roggen M. Carreira EM. J. Am. Chem. Soc. 2010; 132: 11917
  • 12 Rössler SL. Krautwald S. Carreira EM. J. Am. Chem. Soc. 2017; 139: 3603
  • 13 Liu J. Cao C.-G. Sun H.-B. Zhang X. Niu D. J. Am. Chem. Soc. 2016; 138: 13103
  • 14 Seebach D. Angew. Chem. Int. Ed. Engl. 1979; 18: 239
    • 15a Burger EC. Tunge JA. J. Am. Chem. Soc. 2006; 128: 10002
    • 15b Yeagley AA. Chruma JJ. Org. Lett. 2007; 9: 2879
    • 15c Fields WH. Chruma JJ. Org. Lett. 2010; 12: 316
    • 15d Li Z. Jiang Y.-Y. Yeagley AA. Bour JP. Liu L. Chruma JJ. Fu Y. Chem. Eur. J. 2012; 18: 14527
    • 15e Qian X. Ji P. He C. Zirimwabagabo J. Archibald MM. Yeagley AA. Chruma JJ. Org. Lett. 2014; 16: 5228
    • 15f Tang S. Park JY. Yeagley AA. Sabat M. Chruma JJ. Org. Lett. 2015; 17: 2042
    • 15g Niwa T. Yorimitsu H. Oshima K. Org. Lett. 2008; 10: 4689
    • 15h Niwa T. Suehiro T. Yorimitsu H. Oshima K. Tetrahedron 2009; 65: 5125
    • 15i Chen Y.-J. Kazutuka S. Yamashita Y. Kobayashi S. J. Am. Chem. Soc. 2010; 132: 3244
    • 15j Matsumoto M. Harada M. Yamashita Y. Kobayashi S. Chem. Commun. 2014; 13041
    • 15k Li M. Yücel B. Adrio J. Bellomo A. Walsh PJ. Chem. Sci. 2014; 5: 2383
    • 15l Li M. Berritt S. Walsh PJ. Org. Lett. 2014; 16: 4312
    • 15m Li M. González-Esguevillas M. Berritt S. Yang X. Bellomo A. Walsh PJ. Angew. Chem. Int. Ed. 2016; 55: 2825
    • 15n Liu X. Gao A. Ding L. Xu J. Zhao B. Org. Lett. 2014; 16: 2118
    • 15o Fernández-Salas JA. Marelli E. Nolan SP. Chem. Sci. 2015; 6: 4973
    • 16a Wu Y. Hu L. Li Z. Deng L. Nature 2015; 523: 445
    • 16b Zhu Y. Buchwald SL. J. Am. Chem. Soc. 2014; 136: 4500
    • 16c Chen P. Yue Z. Zhang J. Lv X. Wang L. Zhang J. Angew. Chem. Int. Ed. 2016; 55: 13316
    • 16d For a related reaction, see: Li X. Su J. Liu Z. Zhu Y. Dong Z. Qiu S. Wang J. Lin L. Shen Z. Yan W. Wang K. Wang R. Org. Lett. 2016; 18: 956
    • 17a Tu H.-F. Zheng C. Xu R.-Q. Liu X.-J. You S.-L. Angew. Chem. Int. Ed. 2017; 56: 3237
    • 17b Shen D. Chen Q. Yan P. Zeng X. Zhong G. Angew. Chem. Int. Ed. 2017; 56: 3242
    • 18a Horowitz RM. Geissman TA. J. Am. Chem. Soc. 1950; 72: 1518
    • 18b Sugiura M. Mori C. Kobayashi S. J. Am. Chem. Soc. 2006; 128: 11038
    • 18c Rueping M. Antonchick AP. Angew. Chem. Int. Ed. 2008; 47: 10090
    • 18d Ren H. Wulff WD. J. Am. Chem. Soc. 2011; 133: 5656
    • 18e Ren H. Wulff WD. Org. Lett. 2013; 15: 242
    • 18f Goodman CG. Johnson JS. J. Am. Chem. Soc. 2015; 137: 14574
  • 19 Jones AD. Knight DW. Hibbs DE. J. Chem. Soc., Perkin Trans. 1 2001; 1182