Synthesis 2017; 49(17): 3835-3847
DOI: 10.1055/s-0036-1588512
short review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in Nitrogen–Nitrogen Bond Formation

Qihang Guo
Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. of China   eMail: luzhan@zju.edu.cn
,
Zhan Lu*
Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. of China   eMail: luzhan@zju.edu.cn
› Institutsangaben
We thank the NSFC (21472162), the National Basic Research Program of China (2015CB856600), and Zhejiang University for financial support.
Weitere Informationen

Publikationsverlauf

Received: 17. Mai 2017

Accepted after revision: 28. Juni 2017

Publikationsdatum:
07. August 2017 (online)


Abstract

Over the last decade, N–N bond formation as a synthetic strategy has emerged as a powerful key step in the construction of highly valuable heterocycles from easily obtained materials. This review focuses on recent methods used to build N–N bonds, classified by intra- and intermolecular reactions with various types of N–X (O, C, N, H) bond cleavage.

1 I ntroduction

2 Intramolecular N–N Bond Formation

2.1 Cleavage of N–O Bonds

2.2 Cleavage of N–C Bonds

2.3 Cleavage of N–N Bonds

2.4 Cleavage of N–H Bonds

2.4.1 Construction of Pyrazole Derivatives

2.4.2 Construction of Triazole Derivatives

2.4.3 Construction of Indazole and Pyrazoline Derivatives

2.4.4 Construction of Other N–N Bond Derivatives

3 Intermolecular N–N Bond Formation

4 Conclusion

 
  • References

  • 1 Blair LM. Sperry J. J. Nat. Prod. 2013; 76: 794
  • 2 Zhang Y. Herling M. Chenoweth DM. J. Am. Chem. Soc. 2016; 138: 9751
  • 3 Amato M. Iinuma H. Naganawa H. Yamagishi Y. Amada M. Masuda T. Umezawa H. Abe H. Hori M. J. Antibiot. 1986; 39: 184
    • 4a Parry RJ. Li Y. Lii F.-L. J. Am. Chem. Soc. 1992; 114: 10062
    • 4b Tao T. Alemany LB. Parry RJ. Org. Lett. 2003; 5: 1213
  • 5 Parry RJ. Li W. J. Chem. Soc., Chem. Commun. 1994; 995
  • 6 Parry RJ. Mueller JV. J. Am. Chem. Soc. 1984; 106: 5764
    • 7a Furst A. Moore RE. J. Am. Chem. Soc. 1957; 79: 5492
    • 7b Han R. Son KI. Ahn GH. Jun YM. Lee BM. Park Y. Kim BH. Tetrahedron Lett. 2006; 47: 7295
    • 7c Sakai N. Fujii K. Nabeshima S. Ikeda R. Konakahara T. Chem. Commun. 2010; 46: 3173
    • 7d Zhang C. Jiao N. Angew. Chem. Int. Ed. 2010; 49: 6174
  • 8 Nudelman NS. Bonatti AE. Synlett 2000; 1825
  • 9 Ou Y. Liu J. Wang C. Lv L. Huaxue Tongbao 2004; 67: 560
  • 10 Leis JR. Peña ME. Ríos AM. J. Chem. Soc., Perkin Trans. 2 1995; 587
    • 11a Makhora NN. Karpov GA. Mikhailyuk AN. Bova AE. Khmel’nitskii LI. Novikov SS. Izv. Akad. Nauk SSSR, Ser. Khim. 1978; 226
    • 11b Iranpoor N. Firouzabadi H. Pourali AR. Synth. Commun. 2005; 35: 1517
  • 12 Castedo L. Riguera R. Vázquez MP. J. Chem. Soc., Chem. Commun. 1983; 301
  • 13 Iranpoor N. Firouzabadi H. Nowrouzi N. Tetrahedron Lett. 2008; 49: 4242
    • 14a Millar RW. Colclough ME. Desai H. Golding P. Honey PJ. Paul NC. Sanderson AJ. Stewart MJ. Novel Syntheses of Energetic Materials Using Dinitrogen Pentoxide . In Nitration: Recent Laboratory and Industrial Developments, ACS Symposium Series 623. Albright LF. Carr RV. C. Schmitt RJ. American Chemical Society; Washington, D.C.: 1996. Chap. 11, 104
    • 14b Pagoria PF. Mitchell AR. Jessop ES. Propellants, Explos., Pyrotech. 1996; 21: 14
    • 15a Siele VI. Warman M. Leccacorvi J. Hutchinson RW. Motto R. Gilbert EE. Propellants Explos. 1981; 6: 67
    • 15b Cichra DA. Adolph HG. J. Org. Chem. 1982; 47: 2474
    • 15c Levins DA. Bedford CD. Staats SJ. Propellants, Explos., Pyrotech. 1983; 8: 74
    • 15d Wilier RL. Propellants, Explos., Pyrotech. 1983; 8: 65
    • 15e Boileau J. Piteau M. Jacob G. Propellants, Explos., Pyrotech. 1990; 15: 38
  • 16 Coburn MD. Hiskey MA. Oxlcy JC. Smith JL. Zheng W. Rogers E. J. Energ. Mater. 1998; 16: 73
  • 17 Hassner A. Michelson MJ. J. Org. Chem. 1962; 27: 298
  • 18 Reeves JT. Han ZS. Goyal N. Lee H. Busacca CA. Senanayake CH. Tetrahedron Lett. 2014; 55: 2492
  • 19 Sawant D. Kumar R. Maulik PR. Kundu B. Org. Lett. 2006; 8: 1525
  • 20 Nyffenegger C. Pasquinet E. Suzenet F. Poullain D. Jarry C. Léger J.-M. Guillaumet G. Tetrahedron 2008; 64: 9567
  • 21 Lin W.-C. Yang D.-Y. Org. Lett. 2013; 15: 4862
    • 22a Counceller CM. Eichman CC. Wray BC. Stambuli JP. Org. Lett. 2008; 10: 1021
    • 22b Wray BC. Stambuli JP. Org. Lett. 2010; 12: 4576
  • 23 Pangerl M. Hughes CC. Trauner D. Tetrahedron 2010; 66: 6626
  • 24 Klenov MS. Guskov AA. Anikin OV. Churakov AM. Strelenko YA. Fedyanin IV. Lyssenko KA. Tartakovsky VA. Angew. Chem. Int. Ed. 2016; 55: 11472
  • 25 Ning RY. Madan PB. Sternbach LH. J. Org. Chem. 1973; 38: 3995
  • 26 Stokes BJ. Vogel CV. Urnezis LK. Pan M. Driver TG. Org. Lett. 2010; 12: 2884
  • 27 Li J. Zhang Q. Zhou L. J. Org. Chem. 2012; 77: 2566
  • 28 Hu J. Cheng Y. Yang Y. Rao Y. Chem. Commun. 2011; 47: 10133
  • 29 Kumar MR. Park A. Park N. Lee S. Org. Lett. 2011; 13: 3542
  • 30 Prasad AN. Srinivas R. Reddy BM. Catal. Sci. Technol. 2013; 3: 654
  • 31 Bridges KA. Toniatti C. Buser CA. Liu H. Buchholz TA. Meyn RE. Oncotarget 2014; 5: 5076
  • 32 Zheng Q.-Z. Feng P. Liang Y.-F. Jiao N. Org. Lett. 2013; 15: 4262
  • 33 Barluenga J. López-Ortiz JF. Gotor V. J. Chem. Soc., Chem. Commun. 1979; 891
  • 34 Neumann JJ. Suri M. Glorius F. Angew. Chem. Int. Ed. 2010; 49: 7790
  • 35 Suri M. Jousseaume T. Neumann JJ. Glorius F. Green Chem. 2012; 14: 2193
  • 36 Chen B. Zhu C. Tang Y. Ma S. Chem. Commun. 2014; 50: 7677
  • 37 Tang X. Huang L. Yang J. Xu Y. Wu W. Jiang H. Chem. Commun. 2014; 50: 14793
  • 38 Mori H. Sakamoto K. Mashito S. Matauoka Y. Matsubayashi M. Sakai K. Chem. Pharm. Bull. 1993; 41: 1944
  • 39 Guru MM. Punniyamurthy T. J. Org. Chem. 2012; 77: 5063
  • 40 Panda S. Maity P. Manna D. Org. Lett. 2017; 19: 1534
  • 41 Hirayama T. Ueda S. Okada T. Tsurue N. Okuda K. Nagasawa H. Chem. Eur. J. 2014; 20: 4156
  • 42 Ueda S. Nagasawa H. J. Am. Chem. Soc. 2009; 131: 15080
  • 43 Zheng Z. Ma S. Tang L. Zhang-Negrerie D. Du Y. Zhao K. J. Org. Chem. 2014; 79: 4687
  • 44 Song L. Tian X. Lv Z. Li E. Wu J. Liu Y. Yu W. Chang J. J. Org. Chem. 2015; 80: 7219
  • 45 Shang E. Zhang J. Bai J. Wang Z. Li X. Zhu B. Lei X. Chem. Commun. 2016; 52: 7028
  • 46 Rao PJ. Reddy KK. Synth. Commun. 1988; 18: 1995
  • 47 Chen Z. Yan Q. Liu Z. Xu Y. Zhang Y. Angew. Chem. Int. Ed. 2013; 52: 13324
  • 48 Chen Z. Yan Q. Liu Z. Zhang Y. Chem. Eur. J. 2014; 20: 17635
  • 49 Chen Z. Yan Q. Yi H. Liu Z. Lei A. Zhang Y. Chem. Eur. J. 2014; 20: 13692
  • 50 Yu D.-G. Suri M. Glorius F. J. Am. Chem. Soc. 2013; 135: 8802
  • 51 Peng J. Xie Z. Chen M. Wang J. Zhu Q. Org. Lett. 2014; 16: 4702
  • 52 Wu Q. Zhang Y. Cui S. Org. Lett. 2014; 16: 1350
  • 53 Chen C.-Y. Tang G. He F. Wang Z. Jing H. Faessler R. Org. Lett. 2016; 18: 1690
  • 54 Wang Q. Li X. Org. Lett. 2016; 18: 2102
  • 55 Li L. Wang H. Yu S. Yang X. Li X. Org. Lett. 2016; 18: 3662
  • 56 Correa A. Tellitu I. Domínguez E. SanMartin R. J. Org. Chem. 2006; 71: 3501
  • 57 Pandit P. Yamamoto K. Nakamura T. Nishimura K. Kurashige Y. Yanai T. Nakamura G. Masaoka S. Furukawa K. Yakiyama Y. Kawano M. Higashibayashi S. Chem. Sci. 2015; 6: 4160
  • 58 Fritsche RF. Theumer G. Kataeva O. Knölker H.-J. Angew. Chem. Int. Ed. 2017; 56: 549
  • 59 Gieshoff T. Schollmeyer D. Waldvogel SR. Angew. Chem. Int. Ed. 2016; 55: 9437
  • 60 Love BE. Tsai L. Synth. Commun. 1992; 22: 3101
  • 61 Zhang Q. Mándi A. Li S. Chen Y. Zhang W. Tian X. Zhang H. Li H. Zhang W. Zhang S. Ju J. Kurtán T. Zhang C. Eur. J. Org. Chem. 2012; 5256
  • 62 Rosen BR. Werner EW. O’Brien AG. Baran PS. J. Am. Chem. Soc. 2014; 136: 5571
  • 63 Ramakumar K. Tunge JA. Chem. Commun. 2014; 50: 13056
  • 64 Diccianni JB. Hu C. Diao T. Angew. Chem. Int. Ed. 2016; 55: 7534
  • 65 Maestre L. Dorel R. Pablo Ó. Escofet I. Sameera WM. C. Álvarez E. Maseras F. Díaz-Requejo MM. Echavarren AM. Pérez PJ. J. Am. Chem. Soc. 2017; 139: 2216
  • 66 Kang CW. Sarnowski MP. Elbatrawi YM. Valle JR. D. J. Org. Chem. 2017; 82: 1833