Synthesis 2017; 49(15): 3407-3421
DOI: 10.1055/s-0036-1588493
short review
© Georg Thieme Verlag Stuttgart · New York

Direct C–H Functionalization of Heteroarenes via Redox-Neutral Radical Process: A Facile Route to C–C Bonds Formation

Pin Gao
Department of Chemistry, School of Science and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. of China   eMail: duanxh@xjtu.edu.cn
,
Yu-Rui Gu
Department of Chemistry, School of Science and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. of China   eMail: duanxh@xjtu.edu.cn
,
Xin-Hua Duan*
Department of Chemistry, School of Science and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. of China   eMail: duanxh@xjtu.edu.cn
› Institutsangaben
Financial support from the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2016JZ002) and the Fundamental Research Funds of the Central Universities (No. 2015qngz17 and xjj2016056) is greatly appreciated.
Weitere Informationen

Publikationsverlauf

Received: 04. Mai 2017

Accepted after revision: 16. Juni 2017

Publikationsdatum:
06. Juli 2017 (online)


Abstract

Aromatic heterocycles are an important class of compounds found in a wide range of natural products, pharmaceutically active molecules and organic materials. Recently, the direct radical functionalization of heteroaromatic C–H bonds has become an efficient and attractive method to access substituted heteroarenes. Especially, redox-neutral radical reactions have attracted much attention of chemists due to their potential advantages such as mild conditions, free of external oxidants, and good functional group tolerance. So far, a series of redox-neutral radical reactions have been developed. In this review, we mainly focus on the recent advance in direct redox-neutral radical C–H functionalization of heteroarenes. Herein, the direct C–H arylation, C–H alkylation, and C–H fluoroalkylation of heteroarenes are represented respectively, providing practical routes to C–C bond formation.

1 Introduction

2 C–H Arylation of Heteroarenes with Aryl Radicals

3 C–H Alkylation of Heteroarenes with Alkyl Radicals

4 C–H Fluoroalkylation of Heteroarenes with Fluorine-Containing Carbon Radicals

5 Concluding Remarks

 
  • References


    • For selected reviews, see:
    • 1a Wu X.-F. Neumann H. Beller M. Chem. Rev. 2013; 113: 1
    • 1b Gulevich AV. Dudnik AS. Chernyak N. Gevorgyan V. Chem. Rev. 2013; 113: 3084
    • 1c Guo X.-X. Gu D.-W. Wu Z.-X. Zhang W.-B. Chem. Rev. 2015; 115: 1622
    • 1d Eftekhari-Sis B. Zirak M. Chem. Rev. 2015; 115: 151
    • 1e Zhang B. Studer A. Chem. Soc. Rev. 2015; 44: 3505

      For selected reviews, see:
    • 2a Ackermann L. Vicente R. Kapdi AR. Angew. Chem. Int. Ed. 2009; 48: 9792
    • 2b Yeung CS. Dong VM. Chem. Rev. 2011; 111: 1215
    • 2c Gutekunst WR. Baran PS. Chem. Soc. Rev. 2011; 40: 1976
    • 2d Wencel-Delord J. Dröge T. Liu F. Glorius F. Chem. Soc. Rev. 2011; 40: 4740
    • 2e Yamaguchi J. Yamaguchi AD. Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
    • 3a Bonin H. Sauthier M. Felpin FX. Adv. Synth. Catal. 2014; 356: 645
    • 3b Qiu G.-Y.-S. Li Y.-W. Wu J. Org. Chem. Front. 2016; 3: 1011
    • 3c Hofmann J. Heinrich MR. Tetrahedron Lett. 2016; 57: 4334
    • 3d Ghosh I. Marzo L. Das A. Shaikh R. König B. Acc. Chem. Res. 2016; 49: 1566
    • 3e Zhang J.-R. Xu L. Liao Y.-Y. Deng J.-C. Tang R.-Y. Chin. J. Chem. 2017; 35: 271
    • 3f Boubertakh O. Goddard JP. Eur. J. Org. Chem. 2017; 2072
    • 3g Studer A. Curran DP. Angew. Chem. Int. Ed. 2011; 50: 5018
    • 3h Chan TL. Wu Y. Choy PY. Kwong FY. Chem. Eur. J. 2013; 19: 15802
    • 3i Sun C.-L. Shi Z.-J. Chem. Rev. 2014; 114: 9219
    • 3j Mirizzi D. Hilton ST. Jones K. Adv. Heterocycl. Chem. 2010; 100: 101
    • 3k Rossi RA. Pierini AB. Peñéñory AB. Chem. Rev. 2003; 103: 71
    • 3l Galli C. Rappoport Z. Acc. Chem. Res. 2003; 36: 580
    • 3m Zhang N. Samanta SR. Rosen BM. Percec V. Chem. Rev. 2014; 114: 5848

      For selected examples concerning radical C–H bond functionalization of heteroarenes to construct carbon–heteroatom bonds, see:
    • 4a Foo K. Sella E. Thome I. Eastgate MD. Baran PS. J. Am. Chem. Soc. 2014; 136: 5279
    • 4b Allen LJ. Cabrera PJ. Lee M. Sanford MS. J. Am. Chem. Soc. 2014; 136: 5607
    • 4c Toutov AA. Liu W.-B. Betz KN. Fedorov A. Stoltz BM. Grubbs RH. Nature (London) 2015; 518: 80
    • 4d Boursalian GB. Ham WS. Mazzotti AR. Ritter T. Nat. Chem. 2016; 8: 810
    • 5a Pschorr R. Ber. Dtsch. Chem. Ges. 1896; 29: 496
    • 5b Meerwein H. Buchner E. vann Emsterk K. J. Prakt. Chem. 1939; 152: 237

    • For recent reviews, see:
    • 5c Hari DP. König B. Angew. Chem. Int. Ed. 2013; 52: 4734
    • 5d Mo F.-Y. Dong G.-B. Zhang Y. Wang J.-B. Org. Biomol. Chem. 2013; 11: 1582
    • 6a Hari DP. Schroll P. König B. J. Am. Chem. Soc. 2012; 134: 2958
    • 6b Xue D. Jia Z.-H. Zhao C.-J. Zhang Y.-Y. Wang C. Xiao J.-L. Chem. Eur. J. 2014; 20: 2960
    • 6c Zhang J. Chen J. Zhang X.-Y. Lei X.-G. J. Org. Chem. 2014; 79: 10682
    • 6d Zoller J. Fabry DC. Rueping M. ACS Catal. 2015; 5: 3900
    • 6e Wetzel A. Pratsch G. Kolb R. Heinrich MR. Chem. Eur. J. 2010; 16: 2547
    • 6f Fürst MC. D. Bock LR. Heinrich MR. J. Org. Chem. 2016; 81: 5752
    • 6g Amaya T. Hata D. Moriuchi T. Hirao T. Chem. Eur. J. 2015; 21: 16427
    • 7a Crisóstomo FP. Martín T. Carrillo R. Angew. Chem. Int. Ed. 2014; 53: 2181
    • 7b Honraedt A. Raux M.-A. Le Grognec E. Jacquemin D. Felpin FX. Chem. Commun. 2014; 50: 5236
    • 7c Gowrisankar S. Seayad J. Chem. Eur. J. 2014; 20: 12754
    • 7d Maity P. Kundu D. Ranu BC. Eur. J. Org. Chem. 2015; 1727
    • 8a Zhdankin VV. Stang PJ. Chem. Rev. 2008; 108: 5299
    • 8b Merritt EA. Olofsson B. Angew. Chem. Int. Ed. 2009; 48: 9052
    • 8c Fañanás-Mastral M. Synthesis 2017; 49: 1905
    • 8d Wen J. Zhang R.-Y. Chen S.-Y. Zhang J. Yu X.-Q. J. Org. Chem. 2012; 77: 766
    • 8e Yin K. Zhang R.-H. Org. Lett. 2017; 19: 1530
    • 8f Liu Y.-X. Xue D. Wang J.-D. Zhao C.-J. Zou Q.-Z. Wang C. Xiao J.-L. Synlett 2013; 24: 507
    • 8g Tobisu M. Furukawa T. Chatani N. Chem. Lett. 2013; 42: 1203
    • 9a Miyaura N. Suzuki A. Chem. Rev. 1995; 95: 2457
    • 9b Ghosh I. Ghosh T. Bardagi JI. König B. Science (Washington, D. C.) 2014; 346: 725
    • 9c Marzo L. Ghosh I. Esteban F. König B. ACS Catal. 2016; 6: 6780
    • 9d Arora A. Weaver JD. Org. Lett. 2016; 18: 3996
    • 9e Sun G.-Q. Ren S.-Y. Zhu X.-H. Huang M.-N. Wan Y.-Q. Org. Lett. 2016; 18: 544
    • 10a Sunke R. Nallapati SB. Kumar JS. Kumar KS. Pal M. Org. Biomol. Chem. 2017; 15: 4042
    • 10b Wang X.-X. Liu J. Xu L.-B. Hao Z.-H. Wang L. Xiao J. RSC Adv. 2015; 5: 101713
    • 10c Tucker JW. Narayanam JM. R. S. Krabbe W. Stephenson CR. J. Org. Lett. 2010; 12: 368
    • 10d Furst L. Matsuura BS. Narayanam JM. R. Tucker JW. Stephenson CR. J. Org. Lett. 2010; 12: 3104
    • 10e Tucker JW. Zhang Y. Jamison TF. Stephenson CR. J. Angew. Chem. Int. Ed. 2012; 51: 4144
    • 10f Furst L. Narayanam JM. R. Stephenson CR. J. Angew. Chem. Int. Ed. 2011; 50: 9655
  • 11 Swift EC. Williams TM. Stephenson CR. J. Synlett 2016; 27: 754
  • 12 Nakatani A. Hirano K. Satoh T. Miura M. Chem. Eur. J. 2013; 19: 7691
    • 13a Jadhav SD. Bakshi D. Singh A. J. Org. Chem. 2015; 80: 10187
    • 13b Jang H.-L. Kim HT. Cho EJ. Joo JM. Asian J. Org. Chem. 2015; 4: 1386
  • 14 Theunissen C. Wang J. Evano G. Chem. Sci. 2017; 8: 3465
  • 15 Ackermann L. Punji B. Song W. Adv. Synth. Catal. 2011; 353: 3325
  • 16 Xiao B. Liu Z. Liu L. Fu Y. J. Am. Chem. Soc. 2013; 135: 616
  • 17 Wu X. See JW. T. Xu K. Hirao H. Roger J. Hierso J. Zhou JS. Angew. Chem. Int. Ed. 2014; 53: 13573

    • For review, see:
    • 18a Prier CK. Rankic DA. MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 18b Kaldas SJ. Cannillo A. McCallum T. Barriault L. Org. Lett. 2015; 17: 2864
    • 18c McCallum T. Barriault L. Chem. Sci. 2016; 7: 4754
    • 19a Fry AJ. Krieger RL. J. Org. Chem. 1976; 41: 54
    • 19b McTiernan CD. Morin M. McCallum T. Scaiano JC. Barriault L. Catal. Sci. Technol. 2016; 6: 201

      For recent selected reviews, see:
    • 20a Baudoin O. Angew. Chem. Int. Ed. 2007; 46: 1373
    • 20b Goossen LJ. Rodríguez N. Goossen K. Angew. Chem. Int. Ed. 2008; 47: 3100
    • 20c Rodríguez N. Goossen LJ. Chem. Soc. Rev. 2011; 40: 5030
    • 20d Shang R. Liu L. Sci. China: Chem. 2011; 54: 1670
    • 20e Cornella J. Larrosa I. Synthesis 2012; 653

    • For pioneering work, see:
    • 20f Minisci F. Bernardi R. Bertini F. Galli R. Perchinummo M. Tetrahedron 1971; 27: 3575
    • 20g Minisci F. Vismara E. Fontana F. Heterocycles 1989; 28: 489
    • 20h Punta C. Minisci F. Trends Heterocycl. Chem. 2008; 13: 1
  • 21 DiRocco DA. Dykstra K. Krska S. Vachal P. Conway DV. Tudge M. Angew. Chem. Int. Ed. 2014; 53: 4802
    • 22a Cheng W.-M. Shang R. Fu Y. ACS Catal. 2017; 7: 907
    • 22b Cheng W.-M. Shang R. Fu M.-C. Fu Y. Chem. Eur. J. 2017; 23: 2537
    • 23a Romanenko VD. Kukhar VP. Chem. Rev. 2006; 106: 3868
    • 23b Muller K. Faeh C. Diederich F. Science (Washington, D. C.) 2007; 317: 1881

      For reviews concerning direct trifluoromethylation, see:
    • 24a Charpentier J. Früh N. Togni A. Chem. Rev. 2015; 115: 650
    • 24b Liu X. Xu C. Wang M. Liu Q. Chem. Rev. 2015; 115: 683
    • 24c Alonso C. De-Marigorta EM. Rubiales G. Palacios F. Chem. Rev. 2015; 115: 1847
    • 24d Barata-Vallejo S. Bonesi SM. Postigo A. RSC Adv. 2015; 5: 62498
    • 24e Chatterjee T. Iqbal N. You Y. Cho EJ. Acc. Chem. Res. 2016; 49: 2284
    • 25a Nagib DA. MacMillan DW. C. Nature (London) 2011; 480: 224
    • 25b Iqbal N. Choi S. Ko E. Cho EJ. Tetrahedron Lett. 2012; 53: 2005
    • 25c Straathof NJ. W. Gemoets HP. L. Wang X. Schouten JC. Hessel V. Noël T. ChemSusChem 2014; 7: 1612
  • 26 Choi WJ. Choi S. Ohkubo K. Fukuzumi S. Cho EJ. You Y. Chem. Sci. 2015; 6: 1454
  • 27 Wu Y. Zhang H.-R. Jin R.-X. Lan Q. Wang X.-S. Adv. Synth. Catal. 2016; 358: 3528
    • 28a Meanwell NA. J. Med. Chem. 2011; 54: 2529
    • 28b Fujiwara Y. Dixon JA. Rodriguez RA. Baxter RD. Dixon DD. Collins MR. Blackmond DG. Baran PS. J. Am. Chem. Soc. 2012; 134: 1494
    • 28c Lin Q. Chu L. Qing F.-L. Chin. J. Chem. 2013; 31: 885
    • 28d Jung J. Kim E. You Y. Cho EJ. Adv. Synth. Catal. 2014; 356: 2741
    • 28e Najib A. Tabuchi S. Hirano K. Miura M. Heterocycles 2016; 92: 1187
    • 28f Chen H. Li P. Wang M. Wang L. Org. Lett. 2016; 18: 4794
    • 29a Wang L. Wei X.-J. Jia W.-L. Zhong J.-J. Wu L.-Z. Liu Q. Org. Lett. 2014; 16: 5842
    • 29b Wang L. Wei X.-J. Lei W.-L. Chen H. Wu L.-Z. Liu Q. Chem. Commun. 2014; 50: 15916
    • 30a Su Y.-M. Hou Y. Yin F. Xu Y.-M. Li Y. Zheng X. Wang X.-S. Org. Lett. 2014; 16: 2958
    • 30b Yu W. Xu X.-H. Qing F.-L. Org. Lett. 2016; 18: 5130
    • 31a Straathof N. Osch D. Schouten A. Wang X. Schouten J. Hessel V. Noël T. J. Flow Chem. 2014; 4: 12
    • 31b He L. Natte K. Rabeah J. Taeschler C. Neumann H. Brückner A. Beller M. Angew. Chem. Int. Ed. 2015; 54: 4320