Synthesis 2017; 49(20): 4693-4697
DOI: 10.1055/s-0036-1588465
special topic
© Georg Thieme Verlag Stuttgart · New York

A Catalyzed Aerobic Intramolecular C–O Bond Formation: Facile Access to Ring-Fused Dihydrobenzoxazine Derivatives

Xiao-Jie Shang*
a  College of Resources and Environment, Gansu Agricultural University, Lanzhou, Gansu 730070, P. R. of China   Email: shangxiaojie@yahoo.cn
,
Zhong-Quan Liu*
b  College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P. R. of China   Email: liuzq@njucm.edu.cn
c  State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. of China   Email: liuzhq@lzu.edu.cn
› Author Affiliations
This project is supported by the National Natural Science Foundation of China (Nos. 21662001, 21472080, 21672089).
Further Information

Publication History

Received: 11 April 2017

Accepted after revision: 20 May 2017

Publication Date:
27 June 2017 (online)

Published as part of the Special Topic Modern Strategies for Heterocycles Synthesis

Abstract

A catalyst comprising of catalytic cobalt(II) acetate/copper(II) acetate/dl-tyrosine with oxygen as the oxidant allows aerobic intramolecular C–O bond construction in [2-(pyrrolidin-1-yl)phenyl]methanol by free-radical promoted intramolecular selective functionalization of an (sp3)C–H bond by the alcohol, thus providing an environmentally friendly approach to 5H-benzo[d]pyrrolo[2,1-b][1,3]oxazine derivatives.

Supporting Information

 
  • References


    • For selected recent reviews on CDC reactions, see:
    • 1a Li C.-J. Acc. Chem. Res. 2009; 42: 335
    • 1b Yeung CS. Dong VM. Chem. Rev. 2011; 111: 1215
    • 1c Girard SA. Knauber T. Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
    • 1d Jia F. Li Z. Org. Chem. Front. 2014; 1: 194
    • 1e Guo X. Li Z. Li C. Prog. Chem. 2010; 22: 1434

      For reviews on selective functionalization of sp3-α-C–H bond in simple aliphatic alcohols, see:
    • 2a Zhang S. Zhang F. Tu Y.-Q. Chem. Soc. Rev. 2011; 40: 1937
    • 2b Shang X. Liu Z.-Q. Huaxue Xuebao 2015; 73: 1275

    • For selected reviews on (sp3)C–H functionalization, see:
    • 2c Bergman RG. Nature (London) 2007; 446: 391
    • 2d Liu C. Zhang H. Shi W. Lei A. Chem. Rev. 2011; 111: 1780
    • 2e Davies HM. L. Morton D. Chem. Soc. Rev. 2011; 40: 1857
    • 2f Newhouse T. Baran PS. Angew. Chem. Int. Ed. 2011; 50: 3362
    • 2g Engle KM. Mei T.-S. Wasa M. Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
    • 2h Roizen JL. Harvey ME. Du Bois J. Acc. Chem. Res. 2012; 45: 911
    • 2i White MC. Science (Washington, D. C.) 2012; 335: 807
    • 2j Rouquet G. Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726
    • 2k Hartwig JF. J. Am. Chem. Soc. 2016; 138: 2
    • 2l He J. Wasa M. Chan KS. L. Shao Q. Yu J.-Q. Chem. Rev. 2017; DOI: in press; 10.1021/acs.chemrev.6b00622.

      For selected recent reviews on general C–H functionalization, see:
    • 3a Le Bras J. Muzart J. Chem. Rev. 2011; 111: 1170
    • 3b Sun C.-L. Li B.-J. Shi Z.-J. Chem. Rev. 2011; 111: 1293
    • 3c Cho SH. Kim JY. Kwak J. Chang S. Chem. Soc. Rev. 2011; 40: 5068
    • 3d Yamaguchi J. Yamaguchi AD. Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
    • 3e Zhang C. Tang C. Jiao N. Chem. Soc. Rev. 2012; 41: 3464
    • 3f Shang X. Liu Z.-Q. Chem. Soc. Rev. 2013; 42: 3253
    • 3g Liu C. Yuan J. Gao M. Tang S. Li W. Shi R. Lei A. Chem. Rev. 2015; 115: 12138
    • 3h Yang L. Huang H. Chem. Rev. 2015; 115: 3468
    • 3i Guo X.-X. Gu D.-W. Wu Z. Zhang W. Chem. Rev. 2015; 115: 1622
    • 3j Zheng Q.-Z. Jiao N. Chem. Soc. Rev. 2016; 45: 4590
    • 3k Qin Y. Zhu L. Luo S. Chem. Rev. 2017; DOI: in press; 10.1021/acs.chemrev.6b00657.

    • For selected recent examples, see:
    • 3l Huo C. Yuan Y. Wu M. Jia X. Wang X. Chen F. Tang J. Angew. Chem. Int. Ed. 2014; 53: 13544
    • 3m Huo C. Tang J. Xie H. Wang Y. Dong J. Org. Lett. 2016; 18: 1016
    • 3n Huo C. Dong J. Su Y. Tang J. Chen F. Chem. Commun. 2016; 52: 13341
    • 4a Li Z. Zhang Y. Zhang L. Liu Z.-Q. Org. Lett. 2014; 16: 382
    • 4b Li Z. Xiao Y. Liu Z.-Q. Chem. Commun. 2015; 51: 9969
    • 4c Shang X.-J. Liu Z.-Q. Tetrahedron Lett. 2015; 56: 482
    • 4d Liu Z.-Q. Li Z. Chem. Commun. 2016; 52: 14278
    • 5a Liu Z.-Q. Sun L. Wang J. Han J. Zhao Y. Zhou B. Org. Lett. 2009; 11: 1437
    • 5b Liu Z.-Q. Zhang Y. Zhao L. Li Z. Wang J. Li H. Wu L.-M. Org. Lett. 2011; 13: 2208
    • 5c Cui Z. Shang X. Shao X.-F. Liu Z.-Q. Chem. Sci. 2012; 3: 2853
    • 5d Li Z. Fan F. Yang J. Liu Z.-Q. Org. Lett. 2014; 16: 3396
    • 5e Xu Z. Hang Z. Chai L. Liu Z.-Q. Org. Lett. 2016; 18: 4662
    • 5f Xu Z. Hang Z. Liu Z.-Q. Org. Lett. 2016; 18: 4470

      For selected reviews on catalyzed aerobic oxidation, see:
    • 6a Stahl SS. Angew. Chem. Int. Ed. 2004; 43: 3400
    • 6b Punniyamurthy T. Velusamy S. Iqbal J. Chem. Rev. 2005; 105: 2329
    • 6c Piera J. Bäckvall J.-E. Angew. Chem. Int. Ed. 2008; 47: 3506
    • 6d Shi Z. Zhang C. Tang C. Jiao N. Chem. Soc. Rev. 2012; 41: 3381
  • 7 Carreira EM. Fessard TC. Chem. Rev. 2014; 114: 8257
  • 8 Kienzle F. Tetrahedron Lett. 1983; 24: 2213