Synthesis 2017; 49(13): 2890-2900
DOI: 10.1055/s-0036-1588457
special topic
© Georg Thieme Verlag Stuttgart · New York

On the Oxidation of Hydroxylamines with o-Iodoxybenzoic Acid (IBX)

Camilla Parmeggiani
a   Dipartimento di Chimica ‘Ugo Schiff’, Università degli Studi di Firenze, via della Lastruccia 3–13, 50019 Sesto Fiorentino, Italy
b   CNR-INO @ European Laboratory for Non Linear Spectroscopy, Università degli Studi di Firenze, via Nello Carrara 1, 50019 Sesto Fiorentino, Italy   eMail: andrea.goti@unifi.it   eMail: camilla.matassini@unifi.it
,
Camilla Matassini*
a   Dipartimento di Chimica ‘Ugo Schiff’, Università degli Studi di Firenze, via della Lastruccia 3–13, 50019 Sesto Fiorentino, Italy
,
Francesca Cardona
a   Dipartimento di Chimica ‘Ugo Schiff’, Università degli Studi di Firenze, via della Lastruccia 3–13, 50019 Sesto Fiorentino, Italy
,
a   Dipartimento di Chimica ‘Ugo Schiff’, Università degli Studi di Firenze, via della Lastruccia 3–13, 50019 Sesto Fiorentino, Italy
› Institutsangaben
We thank Università degli Studi di Firenze (Fondi di Ateneo) for financial support and Fondazione Donegani/Accademia dei Lincei for a fellowship to C.M.
Weitere Informationen

Publikationsverlauf

Received: 10. April 2017

Accepted after revision: 20. Mai 2017

Publikationsdatum:
07. Juni 2017 (online)


Published as part of the Special Topic Modern Strategies with Iodine in Synthesis

Abstract

o-Iodoxybenzoic acid (IBX) is confirmed as a powerful tool for the oxidation of hydroxylamines. The synthetic route is demonstrated as efficient and user friendly, and is exploited on various carbohydrate-derived N,N-disubstituted hydroxylamines (cyclic, acyclic, and functionalized ones), affording the corresponding nitrones in good yields and regioselectivity. N-Monosubstituted hydroxylamines revealed an interesting divergent behavior depending on the reaction conditions. While IBX oxidation in dimethyl sulfoxide at 45 °C furnished oximes as reported, the oxidation in dichloromethane at room temperature afforded efficiently the unusual corresponding nitroso dimers.

Supporting Information

 
  • References

    • 1a Zhdankin VV. Stang PJ. Chem. Rev. 2008; 108: 5299
    • 1b Wirth T. Angew. Chem. Int. Ed. 2005; 44: 3656
    • 1c Brown M. Farid U. Wirth T. Synlett 2013; 24: 424
    • 1d Zhdankin VV. Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds. Wiley; Chichester: 2013
    • 1e Hypervalent Iodine Chemistry. In Topics in Current Chemistry. Vol. 373. Wirth T. Springer; Cham: 2016
  • 2 Hartmann C. Meyer V. Ber. Dtsch. Chem. Ges. 1893; 26: 1354
  • 3 Kirsch F. Duschek A. Angew. Chem. Int. Ed. 2011; 50: 1524
    • 4a Nicolaou KC. Mathison CJ. N. Montagnon T. Angew. Chem. Int. Ed. 2003; 42: 4077
    • 4b Nicolaou KC. Mathison CJ. N. Montagnon T. J. Am. Chem. Soc. 2004; 126: 5192
  • 5 Matassini C. Parmeggiani C. Cardona F. Goti A. Org. Lett. 2015; 17: 4082
    • 6a Brandi A. Cardona F. Cicchi S. Cordero FM. Goti A. Chem. Eur. J. 2009; 15: 7808
    • 6b Delso I. Tejero T. Goti A. Merino P. Tetrahedron 2010; 66: 1220
    • 6c Delso I. Tejero T. Merino P. Goti A. J. Org. Chem. 2011; 76: 4139
    • 6d Cardona F. Isoldi G. Sansone F. Casnati A. Goti A. J. Org. Chem. 2012; 77: 6980
    • 6e Bonanni M. Marradi M. Cicchi S. Faggi C. Goti A. Org. Lett. 2005; 7: 319
    • 6f Parmeggiani C. Cardona F. Giusti L. Reissig H.-U. Goti A. Chem. Eur. J. 2013; 19: 10595
    • 6g Merino P. Revuelta J. Tejero T. Cicchi S. Goti A. Eur. J. Org. Chem. 2004; 776
    • 6h Martella D. Cardona F. Parmeggiani C. Franco F. Tamayo JA. Robina I. Moreno-Clavijo E. Moreno-Vargas AJ. Goti A. Eur. J. Org. Chem. 2013; 4047
    • 7a Goti A. Nannelli L. Tetrahedron Lett. 1996; 37: 6025
    • 7b Goti A. Cardona F. Soldaini G. Org. Synth. 2005; 81: 204
    • 8a Soldaini G. Cardona F. Goti A. Org. Lett. 2007; 9: 473
    • 8b Cardona F. Bonanni M. Soldaini G. Goti A. ChemSusChem 2008; 1: 327
    • 9a Cicchi S. Cardona F. Brandi A. Corsi M. Goti A. Tetrahedron Lett. 1999; 40: 1989
    • 9b Saladino R. Neri V. Cardona F. Goti A. Adv. Synth. Catal. 2004; 346: 639
    • 9c Cardona F. Gorini L. Goti A. Lett. Org. Chem. 2006; 3: 118
    • 9d Cicchi S. Marradi M. Goti A. Brandi A. Tetrahedron Lett. 2001; 42: 6503
    • 9e Goti A. De Sarlo F. Romani M. Tetrahedron Lett. 1994; 35: 6571
    • 9f Cicchi S. Corsi M. Brandi A. Goti A. J. Org. Chem. 2002; 67: 1678
    • 9g D’Adamio G. Parmeggiani C. Goti A. Cardona F. Eur. J. Org. Chem. 2015; 6541
    • 10a Cicchi S. Marradi M. Vogel P. Goti A. J. Org. Chem. 2006; 71: 1614
    • 10b Matassini C. Marradi M. Cardona F. Parmeggiani C. Robina I. Moreno-Vargas AJ. Penadés S. Goti A. RSC Adv. 2015; 5: 95817
  • 11 Ozanne A. Pouységu L. Depernet D. François B. Quideau S. Org. Lett. 2003; 5: 2903
  • 12 Goti A. Cicchi S. Cacciarini M. Cardona F. Fedi V. Brandi A. Eur. J. Org. Chem. 2000; 3633
  • 13 Cicchi S. Marradi M. Corsi M. Faggi C. Goti A. Eur. J. Org. Chem. 2003; 4152
    • 14a Matassini C. Mirabella S. Goti A. Cardona F. Eur. J. Org. Chem. 2012; 3920
    • 14b Matassini C. Mirabella S. Ferhati X. Faggi C. Robina I. Goti A. Moreno-Clavijo E. Moreno-Vargas AJ. Cardona F. Eur. J. Org. Chem. 2014; 5419
  • 15 Bonanni M. Marradi M. Cicchi S. Goti A. Synlett 2008; 197
  • 16 Emmons WD. J. Am. Chem. Soc. 1957; 79: 6522
    • 17a Stowell JC. J. Org. Chem. 1971; 36: 3055
    • 17b Orrell KG. Stephenson D. Rault T. Magn. Res. Chem. 1989; 27: 368
    • 17c For a recent review on the dimerization of aromatic C-nitroso derivatives, see: Beaudoin D. Wuest JD. Chem. Rev. 2016; 116: 258
  • 18 Reissig H.-U. Dugovič B. Zimmer R. In Science of Synthesis: Nitro, Nitroso, Azo, Azoxy, and Diazonium Compounds, Azides Triazenes, and Tetrazenes. Vol. 41. Banert K. Thieme; Stuttgart: 2009: 259
  • 19 Korsch BH. Riggs NV. Tetrahedron Lett. 1964; 523
  • 20 Boysen MM. K. In Science of Synthesis: Nitro, Nitroso, Azo, Azoxy, and Diazonium Compounds, Azides Triazenes, and Tetrazenes. Vol. 41. Banert K. Thieme; Stuttgart: 2009: 449
  • 21 Shah N. Basu P. Prakash P. Donck S. Gravel E. Namboothiri IN. N. Doris E. Nanomaterials 2016; 6: 37
  • 22 Frigerio M. Santagostino M. Sputore S. J. Org. Chem. 1999; 64: 4537
  • 23 Alternative coordination of IBX iodine to 30 at the oxygen atom, as suggested by one Reviewer, cannot be excluded. However, we consider coordination at nitrogen as depicted in Scheme 7 more likely, on the basis of the well-known higher nucleophilicity of hydroxylamine nitrogen, the analogy with the behavior of N,N-disubstituted hydroxylamines, and the reported oxidation of N,O-dibenzyl hydroxylamine to the corresponding oxime, ref. 4 and see also text.
    • 24a Augustine JK. Kumar R. Bombrun A. Mandal AB. Tetrahedron Lett. 2011; 52: 1074
    • 24b Cai S. Zhang S. Zhao Y. Wang DZ. Org. Lett. 2013; 15: 2660
  • 25 Hirabayashi T. Sakaguchi S. Ishii Y. Angew. Chem. Int. Ed. 2004; 43: 1120
  • 26 Pavia DL. Lampman GL. Kriz GS. Vyvyan JA. Introduction to Spectroscopy . Brooks/Cole; Belmont: 2009
  • 27 Zajac WW. Jr. Walters TR. Woods JM. Synthesis 1988; 808
  • 28 Baer HH. Chiu S.-HL. Can. J. Chem. 1973; 51: 1811
  • 29 Chaudhary P. Gupta S. Muniyappan N. Sabiah S. Kandasamy J. Green Chem. 2016; 18: 2323
  • 30 Tsou E.-L. Yeh Y.-T. Liang P.-H. Cheng W.-C. Tetrahedron 2009; 65: 93
  • 31 Wang W.-B. Huang M.-H. Li Y.-X. Rui P.-X. Hu X.-G. Zhang W. Su J.-K. Zhang Z.-L. Zhu J.-S. Xu W.-H. Xie X.-Q. Jia Y.-M. Yu C.-Y. Synlett 2010; 488
  • 32 Holzapfel CW. Crous R. Heterocycles 1998; 48: 1337
    • 33a Cardona F. Faggi E. Liguori F. Cacciarini M. Goti A. Tetrahedron Lett. 2003; 44: 2315
    • 33b Carmona AT. Wightman RH. Robina I. Vogel P. Helv. Chim. Acta 2003; 86: 3066
    • 33c Desvergnes S. Py S. Vallée Y. J. Org. Chem. 2005; 70: 1459
  • 34 Cardona F. Gorini L. Goti A. Lett. Org. Chem. 2006; 3: 118
  • 35 Merino P. Franco S. Merchan FL. Tejero T. Synth. Commun. 1997; 27: 3529