CC BY-ND-NC 4.0 · SynOpen 2017; 01(01): 0045-0049
DOI: 10.1055/s-0036-1588456
letter
Copyright with the author

l-Proline-Catalysed One-Pot Regio- and Diastereoselective Synthesis of Spiro[pyrido[2,3-d]pyrimidin-2-amine-6,5′-pyrimidines] in Water

Subarna Jyoti Kalita
,
Bidyut Das
,
Dibakar Chandra Deka*
Weitere Informationen

Publikationsverlauf

Received: 29. März 2017

Accepted after revision: 21. Mai 2017

Publikationsdatum:
29. Juni 2017 (online)


Abstract

A simple l-proline-catalysed regio- and diastereoselective synthesis of spiro[pyrido[2,3-d]pyrimidin-2-amine-6,5′-pyrimidines] in water through a strategy of one-pot multicomponent domino reaction of 2,6-diaminopyrimidin-4-one, aldehydes and barbituric acids is described. The notable advantages of the protocol are operational simplicity, mild reaction conditions, simple purification process involving no chromatographic techniques, wide substrate scope, and high yields. The method delivers the desired product within short reaction time and with a diastereoselectivity of 61:39 to 100:0, which makes the protocol highly attractive.

Supporting Information

 
  • References

    • 1a Dömling A. Chem. Rev. 2006; 106: 17
    • 1b Guillena G. Ramoú DJ. Yus M. Tetrahedron: Asymmetry 2007; 18: 693
    • 1c Brauch S. van Berkela SS. Westermann B. Chem. Soc. Rev. 2013; 42: 4948
    • 1d Cioc RC. Ruijter E. Orru RV. A. Green Chem. 2014; 16: 2958
    • 1e Rotstein BH. Zaretsky S. Rai V. Yudin AK. Chem. Rev. 2014; 114: 8323
    • 1f Ziarani GM. Nasaba NH. Lashgarib N. RSC Adv. 2016; 6: 38827
    • 1g Sahn JJ. Granger BA. Martin SF. Org. Biomol. Chem. 2014; 12: 7659
    • 1h Ziarani GM. Alealia F. Lashgari N. RSC Adv. 2016; 6: 50895
    • 2a Butler RN. Cunningham WJ. Coyne AG. Burke LA. J. Am. Chem. Soc. 2004; 126: 11923
    • 2b Li C.-J. Chem. Rev. 2005; 105: 3095
    • 2c Butler RN. Coyne AG. Chem. Rev. 2010; 110: 6302
    • 2d Gawande MB. Bonifaćio VD. B. Luque R. Brancoa PS. Varma RS. Chem. Soc. Rev. 2013; 42: 5522
    • 2e Simon M.-O. Li C.-J. Chem. Soc. Rev. 2012; 41: 1415
    • 2f Wadhwa P. Kaur T. Singh N. Singh UP. Sharma A. Asian J. Org. Chem. 2016; 5: 120
  • 4 Narayana BL. Rao AR. R. Rao PS. Eur. J. Med. Chem. 2009; 44: 1369
  • 5 Gineinah MM. Nasr MN. A. Badr SM. I. El-Husseiny WM. Med. Chem. Res. 2013; 22: 3943
  • 6 Blankley CJ. Bennett LR. Fleming RW. Smith RD. Tessman DK. Kaplan HR. J. Med. Chem. 1983; 26: 403
  • 7 Heber D. Heers C. Ravens U. Pharmazie 1993; 48: 537
  • 8 Yang T. He H. Ang W. Yang Y.-H. Yang J.-Z. Lin Y.-N. Yang H.-C. Pi W.-Y. Li Z.-C. Zhao Y.-L. Luo Y.-F. Wei Y. Molecules 2012; 17: 2351
  • 9 Coates W. Eur. Pat 0 351058 A1, 1990 ; Chem. Abstr. 1990, 113, 40711
  • 10 DeGraw JI. Christie PH. Colwell WT. Sirotnakt FM. J. Med. Chem. 1992; 35: 320
  • 11 Colbry NL. Elslager EF. Werbel LM. J. Med. Chem. 1985; 28: 248
  • 12 El-Gazzar A.-RB. A. Hafez HN. Bioorg. Med. Chem. Lett. 2009; 19: 3392
  • 13 Hanafy FI. Eur. J. Chem. 2011; 2: 65
    • 14a Companyó X. Zea A. Alba A.-NR. Mazzanti A. Moyano A. Rios R. Chem. Commun. 2010; 6953
    • 14b Rios R. Chem. Soc. Rev. 2012; 41: 1060
  • 15 Quiroga J. Cruz S. Insuasty B. Abonía R. Nogueras M. Cobo J. Tetrahedron Lett. 2006; 47: 27
  • 16 Baruah B. Bhuyan PJ. Tetrahedron Lett. 2009; 50: 243
  • 17 Jiang B. Cao L.-J. Tu S.-J. Zheng W.-R. Yu H.-Z. J. Comb. Chem. 2009; 11: 612
  • 18 General procedure for the synthesis of spiro[pyrido[2,3-d]pyrimidin-2-amine-6,5′-pyrimidines] (4aa–o): A mixture of aldehyde 2 (1 mmol) and barbituric acid 3 (1 mmol) was stirred at room temperature in the presence of 20 mol% l-proline as catalyst in water (5 mL) until the generation of 5-arylidenebarbituric acid was indicated by TLC. This was then followed by the addition of another 1 mmol of aldehyde 2 and 1 mmol of 2,6-diaminopyrimidine-4-one 1, then the reaction mixture was heated to reflux for the appropriate time (Table 2). On completion of the reaction, as indicated by TLC, the mixture was cooled and the solid product formed was filtered out and washed with water (3 × 10 mL) to afford pure 4
    • 19a Kalita SJ. Mecadon H. Deka DC. RSC Adv. 2014; 4: 10402
    • 19b Kalita SJ. Mecadon H. Deka DC. RSC Adv. 2014; 4: 32207
    • 19c Kalita SJ. Mecadon H. Deka DC. Tetrahedron Lett. 2015; 56: 731
    • 19d Kalita SJ. Saikia N. Deka DC. Mecadon H. Res. Chem. Intermed. 2016; 42: 6863
    • 19e Kalita SJ. Deka DC. Mecadon H. RSC Adv. 2016; 6: 91320
    • 19f Kalita SJ. Bayan R. Devi J. Brahma S. Mecadon H. Deka DC. Tetrahedron Lett. 2017; 58: 566
    • 20a Gröger H. Wilken J. Angew. Chem. Int. Ed. 2001; 40: 529
    • 20b Northrup AB. MacMillan DW. C. J. Am. Chem. Soc. 2002; 124: 6798
    • 20c List B. Tetrahedron 2002; 58: 5573
    • 20d Liu J. Wang L. Synthesis 2017; 49: 960
    • 20e Liu H. Peng L. Zhang T. Li Y. New J. Chem. 2003; 27: 1159
    • 20f Gunasekaran P. Indumathi S. Perumal S. RSC Adv. 2013; 3: 8318
    • 20g Feng L.-C. Sun Y.-W. Tang W.-J. Xu L.-J. Lam K.-L. Zhou Z. Chan AS. C. Green Chem. 2010; 12: 949
    • 20h Khalafi-Nezhad A. Sarikhani S. Shahidzadeh ES. Panahi F. Green Chem. 2012; 14: 2876
    • 20i Inani H. Jha AK. Easwar S. Synlett 2017; 28: 128