Synlett 2017; 28(15): 1885-1890
DOI: 10.1055/s-0036-1588450
account
© Georg Thieme Verlag Stuttgart · New York

Thieme Chemistry Journals Awardees – Where Are They Now? New Reaction Mode in Carboxylate-Directed C–H Functionalizations: Carboxylates as Deciduous Directing Groups

Agostino Biaforaa, Lukas J. Gooßen*b
  • aFB Chemie-Organische Chemie, TU Kaiserslautern, Erwin-Schrödinger-Str. Geb. 54, 67663 Kaiserslautern, Germany
  • bEvonik Chair of Organic Chemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany   Email: lukas.goossen@rub.de
This work was supported by Deutsche Forschungsgemeinschaft Grant Number “SFB/TRR-88”, “3MET”','XC/1069 “RESOLV”'
Further Information

Publication History

Received: 07 April 2017

Accepted after revision: 12 May 2017

Publication Date:
08 June 2017 (eFirst)

Abstract

The widely available carboxylate groups have recently emerged as advantageous leaving groups for regioselective ipso substitutions and directing groups for ortho-C–H functionalizations in transition-metal catalysis. In the latter reactions, they can subsequently be transformed into a wealth of functionalities through decarboxylative ipso substitutions, or tracelessly removed through protodecarboxylation. The latest development in this field are reactions in which carboxylic acids function as deciduous directing groups, unlocking their unique potential for achieving regioselective monofunctionalization of a single ortho-C–H position. A deciduous directing group stays in place just long enough to direct an incoming reagent into a specific position and is then shed tracelessly as soon as the new C–C or C–heteroatom bond has formed. This inherently prevents unwanted double functionalization. This account discusses characteristics and synthetic opportunities of reactions with carboxylates as deciduous directing groups.

 
  • References

    • 1a Horton DA. Bourne GT. Smythe ML. Chem. Rev. 2003; 103: 893
    • 1b Daugulis O. Do H.-Q. Shabashov D. Acc. Chem. Res. 2009; 42: 1074
    • 1c Colby DA. Bergman RG. Ellman JA. Chem. Rev. 2010; 110: 624
    • 1d Neufeldt SR. Sanford MS. Acc. Chem. Res. 2012; 45: 936
  • 2 Chen Z. Wang B. Zhang J. Yu W. Liu Z. Zhang Y. Org. Chem. Front. 2015; 2: 1107
    • 3a Phipps RJ. Gaunt MJ. Science 2009; 323: 1593
    • 3b Li J. Warratz S. Zell D. De Sarkar S. Ishikawa EE. Ackermann L. J. Am. Chem. Soc. 2015; 137: 13894
    • 3c Saidi O. Marafie J. Ledger AE. W. Liu PM. Mahon MF. Kociok-Köhn G. Whittlesey MK. Frost CG. J. Am. Chem. Soc. 2011; 133: 19298
    • 3d Li S. Cai L. Ji H. Yang L. Li G. Nat. Commun. 2016; 7: 10443
    • 3e Hu X. Martin D. Melaimi M. Bertrand G. J. Am. Chem. Soc. 2014; 136: 13594
    • 4a Sarkar D. Gulevich AV. Melkonyan FS. Gevorgyan V. ACS Catal. 2015; 5: 6792
    • 4b Chernyak N. Dudnik AS. Huang C. Gevorgyan V. J. Am. Chem. Soc. 2010; 132: 8270
    • 4c Hafner A. Bräse S. Angew. Chem. Int. Ed. 2012; 51: 3713
    • 4d Wang C. Chen H. Wang Z. Chen J. Huang Y. Angew. Chem. Int. Ed. 2012; 51: 7242
    • 4e Kinuta H. Tobisu M. Chatani N. J. Am. Chem. Soc. 2015; 137: 1593
    • 4f Souillart L. Cramer N. Chem. Rev. 2015; 115: 9410
    • 4g Tobisu M. Kinuta H. Kita Y. Rémond E. Chatani N. J. Am. Chem. Soc. 2012; 134: 115
    • 5a Bedford RB. Limmert ME. J. Org. Chem. 2003; 68: 8669
    • 5b Bedford RB. Coles SJ. Hursthouse MB. Limmert ME. Angew. Chem. Int. Ed. 2003; 42: 112
    • 5c Emmert MH. Legacy CJ. In Arene Chemistry . Mortier J. John Wiley & Sons Inc; Hoboken, NJ; 2015: 645
    • 5d Zhang F. Spring DR. Chem. Soc. Rev. 2014; 43: 6906
    • 5e Kim D.-S. Park W.-J. Jun C.-H. Chem. Rev. 2017; DOI: in press; doi 10 1021/acs.chemrev.6b00554.
    • 5f Sun H. Guimond N. Huang Y. Org. Biomol. Chem. 2016; 14: 8389
    • 5g Xu J. Liu Y. Wang Y. Li Y. Xu X. Jin Z. Org. Lett. 2017; 19: 1562
    • 5h Liu X.-H. Park H. Hu J.-H. Hu Y. Zhang Q.-L. Wang B.-L. Sun B. Yeung K.-S. Zhang F.-L. Yu J.-Q. J. Am. Chem. Soc. 2017; 139: 888
  • 6 Pichette-Drapeau M. Gooßen LJ. Chem. Eur. J. 2016; 22: 18654
    • 7a Dzik WI. Lange PP. Gooßen LJ. Chem. Sci. 2012; 3: 2671
    • 7b Rodríguez N. Goossen LJ. Chem. Soc. Rev. 2011; 40: 5030
    • 7c Gooßen LJ. Collet F. Gooßen K. Isr. J. Chem. 2010; 50: 617
    • 7d Gooßen LJ. Rodríguez N. Gooßen K. Angew. Chem. Int. Ed. 2008; 47: 3100
    • 8a Cheng G. Li T.-J. Yu J.-Q. J. Am. Chem. Soc. 2015; 137: 10950
    • 8b Zhang Y.-H. Shi B.-F. Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 6097
    • 8c Zhang Y.-H. Yu J.-Q. J. Am. Chem. Soc. 2009; 131: 14654
    • 8d Ueura K. Satoh T. Miura M. J. Org. Chem. 2007; 72: 5362
    • 8e Ueura K. Satoh T. Miura M. Org. Lett. 2007; 9: 1407
    • 8f Shimizu M. Hirano K. Satoh T. Miura MT. J. Org. Chem. 2009; 74: 3478
    • 8g Chiong HA. Pham Q.-N. Daugulis O. J. Am. Chem. Soc. 2007; 129: 9879
    • 8h Qin X. Li X. Huang Q. Liu H. Wu D. Guo Q. Lan J. Wang R. You J. Angew. Chem. Int. Ed. 2015; 54: 7167
    • 8i Shi X.-Y. Liu K.-Y. Fan J. Dong X.-F. Wei J.-F. Li C.-J. Chem. Eur. J. 2015; 21: 1900
    • 8j Ng K.-H. Ng F.-N. Yu W.-Y. Chem. Commun. 2012; 48: 11680
    • 8k Ng F.-N. Zhou Z. Yu W.-Y. Chem. Eur. J. 2014; 20: 4474
    • 8l Simonetti M. Cannas DM. Panigrahi A. Kujawa S. Kryjewski M. Xie P. Larrosa I. Chem. Eur. J. 2016; 23: 549
    • 8m Biafora A. Krause T. Hackenberger D. Belitz F. Gooßen LJ. Angew. Chem. Int. Ed. 2016; 55: 14752
    • 8n Huang L. Weix DJ. Org. Lett. 2016; 18: 5432
    • 8o Mei R. Zhu C. Ackermann L. Chem. Commun. 2016; 52: 13171
    • 8p Johnston AJ. S. Ling KB. Sale D. Lebrasseur N. Larrosa I. Org. Lett. 2016; 18: 6094
    • 9a Wei Y. Hu P. Zhang M. Su W. Chem. Rev. 2017; DOI: in press; doi 10 1021/acs.chemrev.6b00516.
    • 9b Maehara A. Tsurugi H. Satoh T. Miura M. Org. Lett. 2008; 10: 1159
    • 9c Mochida S. Hirano K. Satoh T. Miura M. Org. Lett. 2010; 12: 5776
    • 9d Cornella J. Righi M. Larrosa I. Angew. Chem. Int. Ed. 2011; 50: 9429
    • 9e Mochida S. Hirano K. Satoh T. Miura M. J. Org. Chem. 2011; 76: 3024
    • 9f Luo J. Preciado S. Larrosa I. Chem. Commun. 2015; 51: 3127
    • 9g Shi X.-Y. Dong X.-F. Fan J. Liu K.-Y. Wei J.-F. Li C.-J. Sci. China Chem. 2015; 58: 1286
    • 9h Lee D. Chang S. Chem. Eur. J. 2015; 21: 5364
    • 9i Pan S. Zhou B. Zhang Y. Shao C. Shi G. Synlett 2016; 27: 277
    • 9j Kim K. Vasu D. Im H. Hong S. Angew. Chem. Int. Ed. 2016; 55: 8652
    • 9k Perry GJ. P. Larrosa I. Eur. J. Org. Chem. 2017; DOI: in press: doi 10 1002/ejoc.201700121.
    • 10a Giri R. Yu J.-Q. J. Am. Chem. Soc. 2008; 130: 14082
    • 10b Warratz S. Kornhaaß C. Cajaraville A. Niepötter B. Stalke D. Ackermann L. Angew. Chem. Int. Ed. 2015; 54: 5513
    • 10c Zhang Y. Zhao H. Zhang M. Su W. Angew. Chem. Int. Ed. 2015; 54: 3817
    • 10d Cornella J. Righi M. Larrosa I. Angew. Chem. Int. Ed. 2011; 50: 9429
    • 10e Qin X. Sun D. You Q. Cheng Y. Lan J. You J. Org. Lett. 2015; 17: 1762
  • 11 Huang L. Hackenberger D. Gooßen LJ. Angew. Chem. Int. Ed. 2015; 54: 12607
  • 12 Luo J. Preciado S. Larrosa I. J. Am. Chem. Soc. 2014; 136: 4109
    • 13a Gooßen LJ. Thiel WR. Rodríguez N. Linder C. Melzer B. Adv. Synth. Catal. 2007; 349: 2241
    • 13b Gooßen LJ. Linder C. Rodríguez N. Lange PP. Fromm A. Chem. Commun. 2009; 7173
    • 13c Gooßen LJ. Rodríguez N. Linder C. Lange PP. Fromm A. ChemCatChem 2010; 2: 430
    • 13d Xue L. Su W. Lin Z. Dalton Trans. 2010; 39: 9815
    • 13e Fromm A. van Wüllen C. Hackenberger D. Gooßen LJ. J. Am. Chem. Soc. 2014; 136: 10007
  • 14 Bhadra S. Dzik WI. Gooßen LJ. Angew. Chem. Int. Ed. 2013; 52: 2959
    • 15a Huang L. Biafora A. Zhang G. Bragoni V. Gooßen LJ. Angew. Chem. Int. Ed. 2016; 55: 6933
    • 15b Simonetti M. Larrosa I. Nature Chem. 2016; 8: 1086
  • 16 Biafora A. Khan BA. Bahri J. Hewer JM. Goossen LJ. Org. Lett. 2017; 19: 1232
    • 17a Kumar NY. P. Bechtoldt A. Raghuvanshi K. Ackermann L. Angew. Chem. Int. Ed. 2016; 55: 6929
    • 17b Zhang J. Shrestha R. Hartwig JF. Zhao P. Nature Chem. 2016; 8: 1144
  • 18 Tang J. Hackenberger D. Goossen LJ. Angew. Chem. Int. Ed. 2016; 55: 11296