Synthesis 2017; 49(18): 4141-4150
DOI: 10.1055/s-0036-1588438
special topic
© Georg Thieme Verlag Stuttgart · New York

C4 Pictet–Spengler Reactions for the Synthesis of Core Structures in Hyrtiazepine Alkaloids

Takumi Abe*, Tomohiro Haruyama, Koji Yamada*
Further Information

Publication History

Received: 10 March 2017

Accepted after revision: 04 May 2017

Publication Date:
07 June 2017 (eFirst)

Published as part of the Special Topic Modern Cyclization Strategies in Synthesis

Abstract

The hyrtiazepine alkaloids are a family of bisindole natural products that have the azepinoindole backbone. We developed a biomimetic approach by constructing the azepinoindole core in a one-pot manner through 1,4-diazabicyclo[2.2.2]octane/2,2,2-trifluoroethanol (DABCO/TFE) promoted Pictet–Spengler reaction onto the C-4 position of tryptophan. This strategy allowed the synthesis of common key structures of these families. The key intermediate can be converted into the 3H-pyrano[2,3-b:5,6-e′]diindol intermediate present in hyrtimomines A and B, as well as the azepinoindole core present in fargesine.

Supporting Information

 
  • References

  • 1 Sauleau P. Martin M.-T. Dau M.-ET. H. Youssef DT. A. Bourguet-Kondracki M.-L. J. Nat. Prod. 2006; 69: 1676
    • 2a Momose R. Tanaka N. Fromont J. Kobayashi J. Org. Lett. 2013; 15: 2010
    • 2b Tanaka N. Momose R. Takahashi-Nakaguchi A. Gonoi T. Fromont J. Kobayashi J. Tetrahedron 2014; 70: 832
  • 3 Kubota T. Nakamura K. Sakai K. Fromont J. Gonoi T. Kobayashi J. Chem. Pharm. Bull. 2016; 64: 975
    • 4a Xu Q.-L. Dai L.-X. You S.-L. Chem. Sci. 2013; 4: 97
    • 4b Jiang B. Ye Q. Fan W. Wang S.-L. Tu S.-J. Li G. Chem. Commun. 2014; 6108
    • 4c Bartoccini F. Bartolucci S. Mari M. Piersanti G. Org. Biomol. Chem. 2016; 14: 10095
  • 5 Ito F. Shudo K. Yamaguchi K. Tetrahedron 2011; 67: 1805
    • 6a Yamada K. Namerikawa Y. Abe T. Ishikura M. Heterocycles 2009; 77: 825
    • 6b Yamada K. Yamaguchi S. Hatae N. Abe T. Iwamura T. Ishikura M. Heterocycles 2011; 83: 815
  • 7 Yamada K. Namerikawa Y. Haruyama T. Miwa Y. Yanada R. Ishikura M. Eur. J. Org. Chem. 2009; 5752
  • 8 Abe T. Yamada K. J. Nat. Prod. 2017; 80: 241
    • 9a Abe T. Ikeda T. Yanada R. Ishikura M. Org. Lett. 2011; 13: 3356
    • 9b Abe T. Ikeda T. Yanada R. Ishikura M. Eur. J. Org. Chem. 2012; 5018
    • 9c Abe T. Komatsu H. Ikeda T. Hatae N. Toyota E. Ishikura M. Heterocycles 2012; 86: 505
    • 9d Abe T. Ikeda T. Yanada R. Ishikura M. Org. Lett. 2013; 15: 3622.
    • 9e Abe T. Ikeda T. Itoh T. Hatae N. Toyota E. Ishikura M. Heterocycles 2014; 88: 187
    • 9f Abe T. Itoh T. Hibino S. Choshi T. Ishikura M. Tetrahedron Lett. 2014; 55: 5268
    • 9g Itoh T. Abe T. Nakamura S. Ishikura M. Heterocycles 2015; 91: 1423
    • 9h Abe T. Ishikura M. Heterocycles 2015; 90: 673
    • 9i Itoh T. Abe T. Choshi T. Nishiyama T. Yanada R. Ishikura M. Eur. J. Org. Chem. 2016; 2290
    • 9j Itoh T. Abe T. Choshi T. Nishiyama T. Ishikura M. Heterocycles 2016; 92: 1132
    • 9k Abe T. Yamada K. Org. Lett. 2016; 18: 6504
    • 9l Itoh T. Abe T. Choshi T. Nishiyama T. Ishikura M. Heterocycles 2017; 95: 507
    • 9m Abe T. Kida K. Yamada K. Chem. Commun. 2017; 4362
  • 10 Isaacs NS. Coulson M. J. Phys. Org. Chem. 1996; 9: 639
  • 11 Pasquini S. Mugnaini C. Brizzi A. Ligresti A. Di Marzo V. Ghiron C. Corelli F. J. Comb. Chem. 2009; 11: 795
  • 12 Vilsmeier A. Haack A. Ber. Dtsch. Chem. Ges. 1927; 60: 119
    • 13a Aoki K. Koseki J. Takeda S. Aburada M. Miyamoto K. Chem. Pharm. Bull. 2007; 55: 922
    • 13b Shao C. Shi G. Zhang Y. Pan S. Guan X. Org. Lett. 2015; 17: 2652
  • 14 Scicinski JJ. Congreve MS. Ley SV. J. Comb. Chem. 2004; 6: 375
  • 15 Kang I.-J. Wang L.-W. Hsu S.-J. Lee C.-C. Lee Y.-C. Wu Y.-S. Hsu T.-A. Yueh A. Chao Y.-S. Chern J.-H. Bioorg. Med. Chem. Lett. 2009; 19: 4134
    • 16a Somei M. Heterocycles 1999; 50: 1157
    • 16b Somei M. Adv. Heterocycl. Chem. 2002; 82: 101

      For selected examples of TFE-promoted transformations, see:
    • 17a He Y. Zhao N. Qju L. Zhang X. Fan X. Org. Lett. 2016; 18: 6054
    • 17b Colomer I. Barcelos RC. Christensen KE. Donohoe TJ. Org. Lett. 2016; 18: 5880
    • 17c Dwight SJ. Levin S. Org. Lett. 2016; 18: 5316
    • 17d Eberson L. Hartshorn MP. Persson O. Radner F. Chem. Commun. 1996; 2105
    • 18a Bonnet-Delpon D. Bégué J.-P. Crousse B. Synlett 2004; 18
    • 18b Börner A. Shuklov I. Dubrovina N. Synthesis 2007; 2925
    • 18c Khaksar S. J. Fluorine Chem. 2015; 172: 51
  • 19 Bentley TW. Llewellyn G. Prog. Phys. Org. Chem. 1990; 17: 121
  • 20 Berkessel A. Adrio JA. Hüttenhain D. Neudörfl JM. J. Am. Chem. Soc. 2006; 128: 8421
  • 21 Minegishi S. Kobayashi S. Mayr H. J. Am. Chem. Soc. 2004; 126: 5174
    • 22a Ku J.-M. Jeong B.-S. Jew S.-S. Park H.-G. J. Org. Chem. 2007; 72: 8115
    • 22b Xu Z. Li Q. Zhang L. Jia Y. J. Org. Chem. 2009; 74: 6859
    • 22c Liu Q. Li Q. Ma Y. Jia Y. Org. Lett. 2013; 15: 4528
    • 22d Xu Z. Hu W. Liu Q. Zhang L. Jia Y. J. Org. Chem. 2010; 75: 7626
    • 22e For a review, see: Ito M. Tahara Y. Shibata T. Chem. Eur. J. 2016; 22: 1
  • 23 Bartoccini F. Casoli M. Mari M. Piersanti G. J. Org. Chem. 2014; 79: 3255
  • 24 Nyasse B. Grehn L. Ragnarsson U. Chem. Commun. 1997; 1017
    • 25a Zhao J.-C. Yu S.-M. Liu Y. Yao Z.-J. Org. Lett. 2013; 15: 4300
    • 25b Nicolaou KC. Chen DY.-K. Huang X. Ling T. Bella M. Snyder SA. J. Am. Chem. Soc. 2004; 126: 12888
    • 25c Knowles RR. Carpenter J. Blakey SB. Kayano A. Mangion IK. Sinz CJ. MacMillan DW. C. Chem. Sci. 2011; 2: 308
    • 26a Qu S.-J. Liu Q.-W. Tan C.-H. Jiang S.-H. Zhu D.-Y. Planta Med. 2006; 72: 264
    • 26b Shan D. Gao Y. Jia Y. Angew. Chem. Int. Ed. 2013; 52: 4902
    • 26c Tanaka Y. Suzuki Y. Hamada Y. Nemoto T. Heterocycles 2017; 95: 243
    • 27a NiKolic D. Gödecke T. Chen S.-N. White J. Lankin DC. Pauli GF. van Breemen RB. Fitoterapia 2012; 83: 441
    • 27b Söderberg BC. G. Tetrahedron Lett. 2016; 57: 3873
  • 28 Wendlandt AE. Stahl SS. J. Am. Chem. Soc. 2014; 136: 506