Synlett 2017; 28(08): 981-985
DOI: 10.1055/s-0036-1588399
letter
© Georg Thieme Verlag Stuttgart · New York

Graphene Oxide: An Efficient Acid Catalyst for the Construction of Esters from Acids and Alcohols

Zhengwang Chen*
School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi, 341000, P. R. of China   Email: chenzwang@gnnu.cn
,
Yuelu Wen
School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi, 341000, P. R. of China   Email: chenzwang@gnnu.cn
,
Yejuan Fu
School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi, 341000, P. R. of China   Email: chenzwang@gnnu.cn
,
Hai Chen
School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi, 341000, P. R. of China   Email: chenzwang@gnnu.cn
,
Min Ye
School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi, 341000, P. R. of China   Email: chenzwang@gnnu.cn
,
Guotian Luo*
School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi, 341000, P. R. of China   Email: chenzwang@gnnu.cn
› Author Affiliations
Further Information

Publication History

Received: 28 December 2016

Accepted after revision: 31 December 2016

Publication Date:
20 February 2017 (online)


Abstract

Graphene oxide was found to be an efficient and reusable acid catalyst for the esterification reaction. A wide range of aliphatic and aromatic acids and alcohols were compatible with the standard conditions and afforded the corresponding products in good yields. The heterogeneous catalyst can be easily recovered and recycled in dichloro­ethane solvent with good catalytic activity.

Supporting Information

 
  • References and Notes

    • 1a Novoselov KS, Geim AM, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Science 2004; 306: 666
    • 1b Westervelt RM. Science 2008; 320: 324
    • 1c Rao CN. R, Sood AK, Subrahmanyam KS, Govindaraj A. Angew. Chem. Int. Ed. 2009; 48: 7752
    • 2a Su C, Loh KP. Acc. Chem. Res. 2013; 46: 2275
    • 2b Fan X, Zhang G, Zhang F. Chem. Soc. Rev. 2015; 44: 3023
    • 2c Navalon S, Dhakshinamoorthy A, Alvaro M, Garcia H. Chem. Rev. 2014; 114: 6179
    • 2d Kiang C, Pumera M. Chem. Eur. J. 2015; 21: 12550
  • 3 Verma S, Mungse HP, Kumar N, Choudhary S, Jain SL, Sain B, Khatri OP. Chem. Commun. 2011; 47: 12673
  • 4 Dhakshinamoorthy A, Alvaro M, Concepción P, Fornés V, Garcia H. Chem. Commun. 2012; 48: 5443
  • 5 Dhakshinamoorthy A, Alvaro M, Puche M, Fornes V, Garcia H. ChemCatChem 2012; 4: 2026
  • 6 Gao Y, Tang P, Zhou H, Zhang W, Yang H, Yan N, Hu G, Mei D, Wang J, Ma D. Angew. Chem. Int. Ed. 2016; 55: 3124
  • 7 Hu F, Patel M, Luo F, Flash C, Mendelsohn R, Garfunkel E, He H, Szostak M. J. Am. Chem. Soc. 2015; 137: 14473
  • 8 Kumar AV, Rao KR. Tetrahedron Lett. 2011; 52: 5188
    • 9a Dreyer DR, Jia H.-P, Bielawski CW. Angew. Chem. Int. Ed. 2010; 49: 6813
    • 9b Mirza-Aghayan M, Kashef-Azar E, Boukherroub R. Tetrahedron Lett. 2012; 53: 4962
  • 10 Jia H.-P, Dreyer DR, Bielawski CW. Tetrahedron 2011; 67: 4431
  • 11 Dreyer DR, Jia H.-P, Todd AD, Geng J, Bielawski CW. Org. Biomol. Chem. 2011; 9: 7292
  • 12 Jia H.-P, Dreyer DR, Bielawski CW. Adv. Synth. Catal. 2011; 53: 528
    • 13a Su C, Tandiana R, Balapanuru J, Tang W, Pareek K, Nai CT, Hayashi T, Loh KP. J. Am. Chem. Soc. 2015; 137: 685
    • 13b Huang H, Huang J, Liu Y.-M, He H.-Y, Cao Y, Fan K.-N. Green Chem. 2012; 14: 930
  • 14 Mirza-Aghayan M, Boukherroub R, Nemati M, Rahimifard M. Tetrahedron Lett. 2012; 53: 2473

    • For some recent examples of GO as acid catalysts, see:
    • 15a Wang H, Deng T, Wang Y, Cui X, Qi Y, Mu X, Hou X, Zhu Y. Green Chem. 2013; 15: 2379
    • 15b Kundu S, Basu B. RSC Adv. 2015; 5: 50178
    • 15c Basu B, Kundu S, Sengupta D. RSC Adv. 2013; 3: 22130
    • 15d Roy B, Ghosh S, Ghosh P, Basu B. Tetrahedron Lett. 2015; 56: 6762
    • 15e Roy B, Sengupta D, Basu B. Tetrahedron Lett. 2014; 55: 6596
    • 15f Chauhan SM. S, Mishra S. Molecules 2011; 16: 7256
  • 16 Otera J. Esterification: Methods, Reactions, and Applications. Wiley-VCH; Weinheim: 2003

    • For selective recent examples, see:
    • 17a Verma S, Baig RB. N, Han C, Nadagouda MN, Varma RS. Green Chem. 2016; 18: 251
    • 17b Ren L, Wang L, Lv Y, Li G, Gao S. Org. Lett. 2015; 17: 5172
    • 17c Ochiai M, Yoshimura A, Miyamoto K, Hayashi S, Nakanishi W. J. Am. Chem. Soc. 2010; 132: 9236
    • 17d Xu B, Liu X, Haubrich J, Friend CM. Nat. Chem. 2010; 2: 61
    • 17e Miyamura H, Yasukawa T, Kobayashi S. Green Chem. 2010; 12: 776
    • 17f Gowrisankar S, Neumann H, Beller M. Angew. Chem. Int. Ed. 2011; 50: 5139
    • 17g Liu C, Wang J, Meng L, Deng Y, Li Y, Lei A. Angew. Chem. Int. Ed. 2011; 50: 5144
    • 17h Liu H, Dong C, Zhang Z, Wu P, Jiang X. Angew. Chem. Int. Ed. 2012; 51: 12570
    • 17i Huang X, Li X, Zou M, Song S, Tang C, Yuan Y, Jiang N. J. Am. Chem. Soc. 2014; 136: 14858
    • 18a Larock RC. Comprehensive Organic Transformations: A Guide to Functional Group Preparations. 2nd ed. Wiley-VCH; New York: 1999
    • 18b Maki T, Ishihara K, Yamamoto H. Org. Lett. 2005; 7: 5047
    • 18c Iranpoor N, Firouzabadi H, Khalili D. Org. Biomol. Chem. 2010; 8: 4436
    • 18d Nowrouzi N, Mehranpour AM, Rad JA. Tetrahedron 2010; 66: 9596
    • 18e Wang Y, Zhi H, Luo J. J. Mol. Catal. A: Chem. 2013; 379: 46
  • 19 Hummers WS, Offeman RE. J. Am. Chem. Soc. 1958; 80: 1339
    • 20a Zhang L, Wang Z, Xu C, Li Y, Gao J, Wang W, Liu Y. J. Mater. Chem. 2011; 21: 10399
    • 20b Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y. ACS Nano 2008; 2: 463
    • 21a Dreyer DR, Todd AD, Bielawski CW. Chem. Soc. Rev. 2014; 43: 5288
    • 21b Dimiev A, Kosynkin DV, Alemany LB, Chaguine P, Tour JM. J. Am. Chem. Soc. 2012; 134: 2815
    • 21c Eigler S, Dotzer C, Hof F, Bauer W, Hirsch A. Chem. Eur. J. 2013; 19: 9490
  • 22 Liu F, Sun J, Zhu L, Meng X, Qi C, Xiao F.-S. J. Mater. Chem. 2012; 22: 5495
    • 23a Zhuo Q, Ma Y, Gao J, Zhang P, Xia Y, Tian Y, Sun X, Zhong J, Sun X. Inorg. Chem. 2013; 52: 3141
    • 23b Pan D, Wang S, Zhao B, Wu M, Zhang H, Wang Y, Jiao Z. Chem. Mater. 2009; 21: 3136
  • 24 Ethyl 3-Phenylpropiolate (3a); Typical Procedure: A mixture of phenylpropiolic acid (1a; 0.2 mmol) and GO (50 wt%, calcd based on the mass of acid) in EtOH (1 mL) was placed in a test tube equipped with a magnetic stirring bar. The mixture was stirred and heated at 100 °C for 24 h. Upon completion of the reaction, GO was filtered, the solvent was removed, and the residue was separated by column chromatography (petroleum ether/ethyl acetate, 10:1) to give 1a (34 mg, 98%) as a yellow liquid. 1H NMR (400 MHz, CDCl3): δ = 7.63–7.54 (m, 2 H), 7.49–7.41 (m, 1 H), 7.41–7.32 (m, 2 H), 4.29 (q, J = 7.2 Hz, 2 H), 1.35 (t, J = 7.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 154.0, 132.9, 130.6, 128.5, 119.6, 86.0, 80.7, 62.1, 14.0. MS (EI): m/z = 174, 146, 129, 118, 102, 89, 75, 63, 51, 39, 29.