Synlett 2017; 28(06): 684-690
DOI: 10.1055/s-0036-1588398
letter
© Georg Thieme Verlag Stuttgart · New York

A Sulfonylation Reaction: Direct Synthesis of 2-Sulfonylindoles from Sulfonyl Hydrazides and Indoles

Rajjakfur Rahaman
Department of Chemistry, National Institute of Technology Silchar, Silchar-788010, India   Email: [email protected]
,
Pranjit Barman*
Department of Chemistry, National Institute of Technology Silchar, Silchar-788010, India   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 13 October 2016

Accepted after revision: 29 December 2016

Publication Date:
24 January 2017 (online)


Abstract

A metal-free synthesis of 2-sulfonylindole derivatives has been developed through a novel TBHP/I2-mediated coupling of C3/unsubstituted indoles with sulfonyl hydrazides. The reaction utilizes readily available starting materials under mild reaction conditions, providing an alternative and attractive approach to 2-sulfonylindoles with high yields. The developed synthetic procedure is suitable for both N-protected or unprotected indoles.

Supporting Information

 
  • References and Notes

    • 2a Ban Y, Murakami Y, Iwasawa Y, Tsuchiya M, Takano N. Med. Res. Rev. 1988; 8: 231
    • 2b Seigler DS. Plant Secondary Metabolism . Springer; New York: 2001: 628-667
    • 2c Katritzky AR, Pozharskii AF. Handbook of Heterocyclic Chemistry . Pergamon Press; Oxford: 2000
    • 2d Hibino S, Choshi T. Nat. Prod. Rep. 2002; 19: 148
    • 2e Kochanowska-Karamyan AJ, Hamann MT. Chem. Rev. 2010; 110: 4489
    • 2f Humphrey GR, Tsutumi JT. Chem. Rev. 2006; 106: 2875
    • 2g Takayama H, Tsutsumi SI, Kitajima M, Santiarworn D, Liawruangrath B, Aimi N. Chem. Pharm. Bull. 2003; 51: 232
    • 3a Campbell JA, Bordunov V, Borka CA, Browner MF, Kress JM, Mirzadegan T, Ramesha C, Sanpablo BF, Stabler R, Takahara P, Villasenor A, Walker KA. M, Wang J.-H, Welch M, Weller P. Bioorg. Med. Chem. Lett. 2004; 14: 4741
    • 3b Holenz J, Pauwels PJ, Diaz JL, Mercèr R, Codony X, Buschmann H. Drug Discovery Today 2006; 11: 283
    • 3c Bentley JM, Bickerdike MJ, Hebeisen P, Kennett GA, Lightowler S, Mattei P, Mizrahi J, Morley TJ, Plancher J.-M, Richter H, Roever S, Taylor S, Vickers SP. WO 2002051844A1, Chem. Abstr. 2002, 137, 78856.
    • 3d Williams TM, Ciccarone TM, MacTough SC, Rooney CS, Balani SK, Condra JH, Emini EA, Goldman ME, Greenlee WJ, Kauffman LR, O’Brien JA, Sardana VV, Schleif WA, Theoharides AD, Anderson PS. J. Med. Chem. 1993; 36: 1291
    • 3e Tong L, Shankar BB, Chen L, Rizvi R, Kelly J, Gilbert E, Huang C, Yang D.-Y, Kozlowski JA, Shih N.-Y, Gonsiorek W, Hipkin RW, Malikzay A, Lunn CA, Lundell DJ. Bioorg. Med. Chem. Lett. 2010; 20: 6785
    • 3f Romey G, Lazdunski M. J. Pharmacol. Exp. Ther. 1994; 271: 1348
    • 5a Caddick S, Aboutayab K, West R. Synlett 1993; 231
    • 5b Asai T, Takeuchi T, Diffenderfer J, Sibley DL. Antimicrob. Agents Chemother. 2002; 46: 2393
    • 6a Bernotas R, Antane S, Harrison B, Lenicek S, Coupet J, Schechter L, Smith D, Zhang GM. Bioorg. Med. Chem. Lett. 2004; 14: 5499
    • 6b Broggini G, Diliddo D, Zecchi G. J. Heterocycl. Chem. 1991; 28: 89
    • 6c Vedejs E, Little JD. J. Org. Chem. 2004; 69: 1794
    • 6d Shen C, Zhang P, Sun Q, Bai S, Hor TS. A, Liu X. Chem. Soc. Rev. 2015; 44: 291
    • 6e Lee C.-F, Liu Y.-C, Badsara SS. Chem. Asian J. 2014; 9: 706
    • 7a Boroujeni KP. J. Sulfur Chem. 2010; 31: 197
    • 7b Samant SD, Singh DU, Singh PR. Tetrahedron Lett. 2004; 45: 9079
    • 7c Yadav JS, Reddy BV. S, Krishna AD, Swamy T. Tetrahedron Lett. 2003; 44: 6055
    • 7d Gao D, Parvez M, Back TG. Chem. Eur. J. 2010; 16: 14281
    • 7e Boroujeni KP. Bull. Korean Chem. Soc. 2010; 31: 1887
    • 8a Xiao F, Chen H, Xie H, Chen S, Yang L, Deng G.-J. Org. Lett. 2014; 16: 50
    • 8b Katrun P, Mueangkaew C, Pohmakotr M, Reutrakul V, Jaipetch T, Soorukram D, Kuhakarn C. J. Org. Chem. 2014; 79: 1778
    • 8c Karchava AV, Shuleva IS, Ovcharenko AA, Yurovskaya MA. Chem. Heterocycl. Compd. 2010; 46: 291 ; Khim. Geterotsikl. Soedin. 2010, 373
    • 8d Wenkert E, Moeller PD. R, Piettre SR, McPhail AT. J. Org. Chem. 1987; 52: 3404
    • 8e Yang Y, Li W, Xia C, Ying B, Shen C, Zhang P. ChemCatChem 2016; 8: 304
    • 9a Zhang J, Shao Y, Wang H, Luo Q, Chen J, Xu D, Wan X. Org. Lett. 2014; 16: 3312
    • 9b Tang S, Wu Y, Liao W, Bai R, Liu C, Lei A. Chem. Commun. 2014; 50: 4496
    • 9c Li X, Xu X, Tang Y. Org. Biomol. Chem. 2013; 11: 1739
    • 9d Li X, Xu X, Zhou C. Chem. Commun. 2012; 48: 12240
    • 9e Li X, Xu X, Hu P, Xiao X, Zhou C. J. Org. Chem. 2013; 78: 7343
    • 9f Li X, Xu X, Shi X. Tetrahedron Lett. 2013; 54: 3071
    • 9g Yang F.-L, Tian S.-K. Angew. Chem. Int. Ed. 2013; 52: 4929
    • 10a Finkbeiner P, Nachtsheim BJ. Synthesis 2013; 45: 979
    • 10b Froehr T, Sindlinger CP, Kloeckner U, Finkbeiner P, Nachtsheim BJ. Org. Lett. 2011; 13: 3754
    • 10c Lamani M, Prabhu KR. J. Org. Chem. 2011; 76: 7938
    • 10d Tian J.-S, Ng KW. J, Wong J.-R, Loh T.-P. Angew. Chem. Int. Ed. 2012; 51: 9105
    • 10e Nobuta T, Tada N, Fujiya A, Kariya A, Miura T, Itoh A. Org. Lett. 2013; 15: 574
    • 10f Lv Y, Li Y, Xiong T, Lu Y, Liu Q, Zhang Q. Chem. Commun. 2014; 50: 2367
    • 10g Wang G, Yu Q.-Y, Chen S.-Y, Yu X.-Q. Org. Biomol. Chem. 2014; 12: 414
    • 10h Wu X.-F, Gong J.-L, Qi X. Org. Biomol. Chem. 2014; 12: 5807
    • 10i Jiang Q, Xu B, Zhao A, Jia J, Liu T, Guo C. J. Org. Chem. 2014; 79: 8750
    • 10j Zhao D, Shen Q, Li J.-X. Adv. Synth. Catal. 2015; 357: 339
    • 10k Tang S, Liu K, Long Y, Gao X, Gao M, Lei A. Org. Lett. 2015; 17: 2404
    • 11a Qiu J.-K, Hao W.-J, Wang D.-C, Wei P, Sun J, Jiang B, Tu S.-J. Chem. Commun. 2014; 50: 14782
    • 11b Zhang J, Shao Y, Wang H, Luo Q, Chen J, Xu D, Wan X. Org. Lett. 2014; 16: 3312
    • 11c Majumdar P, Pati A, Patra M, Behera RK, Behera AK. Adv. Synth. Catal. 2014; 114: 2942
    • 11d Kang X, Yan R, Yu G, Pang X, Liu X, Li X, Xiang L, Huang G. J. Org. Chem. 2014; 79: 10605
    • 11e Guo S.-R, He W.-M, Xiang J.-N, Yuan Y.-Q. Chem. Commun. 2014; 50: 8578
    • 11f Zhao X, Zhang L, Li T, Liu G, Wang H, Lu K. Chem. Commun. 2014; 50: 13121
    • 11g Tang S, Wu Y, Liao W, Bai R, Liu C, Lei A. Chem. Commun. 2014; 50: 4496
    • 12a Singh R, Raghuvanshi DS, Singh KN. Org. Lett. 2013; 15: 4202
    • 12b Singh N, Singh R, Raghuvanshi DS, Singh KN. Org. Lett. 2013; 15: 5874
    • 12c Singh R, Allam BK, Singh N, Kumari K, Singh SK, Singh KN. Adv. Synth. Catal. 2015; 357: 1181
    • 13a Rahaman R, Devi N, Barman P. Tetrahedron Lett. 2015; 56: 4224
    • 13b Rahaman R, Devi N, Bhagawati JR, Barman P. RSC Adv. 2016; 6: 18929
    • 13c Rahaman R, Devi N, Sarma K, Barman P. RSC Adv. 2016; 6: 10873
    • 13d Devi N, Rahaman R, Barman P. Eur. J. Org. Chem. 2016; 384
    • 14a Singh R, Allam BK, Singh N, Kumari K, Singh SK, Singh KN. Org. Lett. 2015; 17: 2656
    • 14b Yotphan S, Sumunnee L, Beukeaw D, Buathongjan C, Reutrakul V. Org. Biomol. Chem. 2016; 14: 590
    • 14c Qian H, Huang X. Tetrahedron Lett. 2002; 43: 1059
    • 14d Wei W, Wen J, Yang D, Jing H, You J, Wang H. RSC Adv. 2015; 5: 4416
    • 14e Abe H, Suzuki H. Bull. Chem. Soc. Jpn. 1999; 72: 787
    • 14f Nair V, Augustine A, Suja TD. Synthesis 2002; 2259
    • 14g Meesin J, Katrun P, Pareseecharoen C, Pohmakotr M, Reutrakul V, Soorukram D, Kuhakarn C. J. Org. Chem. 2016; 81: 2744
    • 14h Senadi GC, Guo B.-C, Hub W.-P, Wang J.-J. Chem. Commun. 2016; 52: 11410
    • 14i Yang F.-L, Wang F.-X, Wang T.-T, Wanga Y.-J, Tian S.-K. Chem. Commun. 2014; 50: 2111
    • 14j Wen J, Wei W, Xue S, Yang D, Lou Y, Gao C, Wang H. J. Org. Chem. 2015; 80: 4966
    • 14k Su Y, Zhou X, He C, Zhang W, Ling X, Xiao X. J. Org. Chem. 2016; 81: 4981
    • 14l Yang Z, Hao W.-J, Wang S.-L, Zhang J.-P, Jiang B, Li G, Tu S.-J. J. Org. Chem. 2015; 80: 9224
  • 15 General Procedure for the Synthesis of 2-Sulfonylindoles To a mixture of indole 1 (0.5 mmol) with sulfonyl hydrazide 2 (1 mmol), iodine (20 mol%), TBHP (70% in water, 1 mmol) in DCE (2 mL). The resulting reaction mixture was stirred at r.t. for 2 h. Upon completion, distilled deionized H2O (10 mL) and sat. Na2S2O3 (10 mL) were added, and the mixture was extracted with EtOAc (3 × 20 mL). The combined organic layer was washed with sat. brine (20 mL), dried over anhydrous Na2SO4, and concentrated in vacuum. The crude product was purified by column chromatography using EtOAc–hexanes (1:5) as eluent to afford the desired 2-sulfonylindole 3.
  • 16 See Supporting Information for detailed experimental procedures and characterization data. 2-(Phenylsulfonyl)-1H-indole (3a)8a White solid (118.4 mg, 92% yield); mp 159–161 °C. 1H NMR (500 MHz, CDCl3): δ = 8.81 (br s, 1 H), 8.04 (d, J = 7.0 Hz, 2 H), 7.66 (d, J = 9.0 Hz, 1 H), 7.50 (d, J = 2.5 Hz, 1 H), 7.48 (d, J = 8.0 Hz, 1 H), 7.31 (d, J = 6.0 Hz, 1 H), 7.21–7.17 (m, 3 H), 7.14 (t, J = 7.0 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 141, 136.3, 133.5, 130.5, 128.9, 128.5, 124.6, 122.9, 120.7, 119.5, 111.4, 108.9. Anal. Calcd (%) for C14H11NO2S: C, 65.35; H, 4.31; N, 5.44. Found: C, 65.37; H, 4.32; N, 5.45. 2-Tosyl-1H-indole (3b) 8a White solid (122.1 mg, 90% yield); mp 195–197 °C. 1H NMR (500 MHz, CDCl3): δ = 9.02 (br s, 1 H), 7.95 (d, J = 8.0 Hz, 2 H), 7.65 (d, J = 7.5 Hz, 1 H), 7.50 (d, J = 2.5 Hz, 1 H), 7.46 (d, J = 8.0 Hz, 1 H), 7.30–7.27 (m, 1 H), 7.20 (t, J = 7.5 Hz, 1 H), 7.20 (d, J = 8.0 Hz, 2 H), 2.33 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 143.7, 136.3, 135.3, 130.2, 139.3, 128.9, 126.1, 122.8, 120.7, 119.5, 111.3, 108.5, 20.7. Anal. Calcd (%) for C15H13NO2S: C, 66.40; H, 4.83; N, 5.16. Found: C, 66.43; H, 4.81; N, 5.15. 2-[(4-Chlorophenyl)sulfonyl]-1H-indole (3c) 8a White solid (128.4 mg, 88% yield); mp 146–148 °C. 1H NMR (500 MHz, CDCl3): δ = 8.82 (br s, 1 H), 7.83 (d, J = 9 Hz, 2 H), 7.75 (d, J = 8.5 Hz, 2 H), 7.59 (d, J = 8.0 Hz, 1 H), 7.49 (d, J = 2.5 Hz, 1 H), 7.46 (d, J = 8.0 Hz, 1 H), 7.30–7.26 (m, 1 H), 7.20–7.17 (m, 1 H). 13C NMR (125 MHz, CDCl3): δ = 140, 137.6, 136.3, 130.6, 130.4, 128.6, 126.9, 123.1, 120.9, 119.3, 111.5, 109.1. Anal. Calcd (%) for C14H10ClNO2S: C, 57.63; H, 3.45; N, 4.80. Found: C, 57.65; H, 3.47; N, 4.82. 2-[(4-Bromophenyl)sulfonyl]-1H-indole (3d) 8a White solid (142.9 mg, 85% yield); mp 191–193 °C. 1H NMR (500 MHz, CDCl3): δ = 8.87 (br s, 1 H), 7.71 (d, J = 8.5 Hz, 2 H), 7.50 (d, J = 7.5 Hz, 1 H), 7.42 (d, J = 2.5 Hz, 1 H), 7.39 (d, J = 7.5 Hz, 1 H), 7.19–7.18 (m, 3 H), 7.12–7.09 (m, 1 H). 13C NMR (125 MHz, CDCl3): δ = 140.5, 138.4, 136.3, 131.5, 130.6, 127.2, 123.1, 120.9, 119.3, 118.1, 111.5, 109. Anal. Calcd (%) for C14H10BrNO2S: C, 50.01; H, 3.00; N, 4.17. Found: C, 50.04; H, 3.01; N, 4.15. 2-[(4-Methoxyphenyl)sulfonyl]-1H-indole (3e) 8a White solid (127.9 mg, 89% yield); mp 186–187 °C. 1H NMR (500 MHz, CDCl3): δ = 8.81 (br s, 1 H), 7.9 (d, J = 8.5 Hz, 2 H), 7.42 (d, = 2.5 Hz, 1 H), 7.31 (d, J = 8.5 Hz, 1 H), 7.09 (d, J = 7.5 Hz, 2 H), 7.06–7.03 (m, 2 H), 6.91 (d, J = 8.5 Hz, 1 H), 3.77 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 162.9, 136.4, 135, 131.2, 129.8, 128.5, 125.5, 124.5, 115, 113.4, 112.3, 108.6, 55.6. Anal. Calcd (%) for C15H13NO3S: C, 62.70; H, 4.56; N, 4.87. Found: C, 62.72; H, 4.55; N, 4.89. 2-[(4-Fluorophenyl)sulfonyl]-1H-indole (3f) 8a White solid (112.9 mg, 82% yield); mp 155–157 °C. 1H NMR (500 MHz, CDCl3): δ = 8.95 (br s, 1 H), 8.03 (d, J = 8.5 Hz, 2 H), 7.57–7.52 (m, 3 H), 7.36 (t, J = 7.0 Hz, 1 H), 7.24 (t, J = 7.5 Hz, 1 H), 7.16 (d, J = 9 Hz, 2 H). 13C NMR (125 MHz, CDCl3): δ = 166 (d, J = 251.6 Hz), 136.4 (d, J = 3 Hz), 135, 130 (d, J = 9.6 Hz), 128.3, 124.9, 123.4, 121.3, 119.1, 116.3 (d, J = 22.6 Hz), 111.8, 109. Anal. Calcd (%) for C14H10FNO2S: C, 61.08; H, 3.66; N, 5.09. Found: C, 61.05; H, 3.67; N, 5.06. 2-(Naphthalen-2-ylsulfonyl)-1H-indole (3h) 8a White solid (138.3 mg 90% yield); mp 156–158 °C. 1H NMR (500 MHz, CDCl3): δ = 9.05 (br s, 1 H), 8.46 (s, 1 H), 7.96–7.93 (m, 2 H), 7.72 (d, J = 8.0 Hz, 1 H), 7.65–7.61 (m, 2 H), 7.48–7.45 (m, 2 H), 7.38–7.33 (m, 2 H), 7.29–7.25 (m, 2 H), 7.16–7.13 (m, 2 H). 13C NMR (125 MHz, CDCl3): δ = 138.5, 136.4, 133.6, 131.2, 130.5, 128.9, 128.1, 127.5, 126.8, 126.2, 124.9, 124.6, 123.3, 122.9, 120.8, 119.5, 111.4, 108.6. Anal. Calcd (%) for C18H13NO2S: C, 70.34; H, 4.26; N, 4.56. Found: C, 70.31; H, 4.23; N, 4.57. 2-(Methylsulfonyl)-1H-indole (3i) 8a White solid (89.8 mg, 92% yield); mp 184–186 °C. 1H NMR (500 MHz, CDCl3): δ = 9.01 (br s, 1 H), 7.65 (d, J = 7.5 Hz, 1 H), 7.43 (d, J = 8.0 Hz, 1 H), 7.29–7.25 (m, 1 H), 7.22–7.16 (m, 2 H), 3.25 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 136.4, 133.3, 126.9, 126.2, 122.9, 121, 111.6, 108.2, 45.2. Anal. Calcd (%) for C9H9NO2S: C, 55.37; H, 4.65; N, 7.17. Found: C, 55.40; H, 4.63; N, 7.15. 5-Methoxy-2-(phenylsulfonyl)-1H-indole (3m) 8a White solid (137.9 mg, 96% yield); mp 135–137 °C. 1H NMR (400 MHz, CDCl3): δ = 9.01 (br s, 1 H), 8.02 (d, J = 8.0 Hz, 2 H), 7.57–7.51 (m, 3 H), 7.36 (d, J = 7.6 Hz, 1 H), 7.22 (s, 1 H), 7.16–7.12 (m, 2 H), 3.81 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 155, 140.9, 134.1, 133.5, 132.6, 129.8, 128.1, 127.7, 117.6, 112.3, 109, 102.3, 55.5. Anal. Calcd (%) for C15H13NO3S: C, 62.70; H, 4.56; N, 4.87. Found: C, 62.67; H, 4.57; N, 4.85. 4-Methyl-2-(phenylsulfonyl)-1H-indole (3n) 8a White solid (124.8 mg, 92% yield); mp 166–169 °C. 1H NMR (400 MHz, CDCl3): δ = 9.01 (br s, 1 H), 7.96 (d, J = 8.4 Hz, 2 H), 7.50–7.45 (m, 3 H), 7.32–7.27 (m, 3 H), 6.96 (d, J = 7.2 Hz, 1 H), 2.51 (s, 3 H). Anal. Calcd (%) for C15H13NO2S: C, 66.40; H, 4.83; N, 5.16. Found: C, 66.38; H, 4.80; N, 5.17. 6-Chloro-2-(phenylsulfonyl)-1H-indole (3o) 8a White solid (116.7 mg, 80% yield); mp 181–183 °C. 1H NMR (500 MHz, CDCl3): δ = 9.01 (br s, 1 H), 8.01 (d, J = 8.5 Hz, 2 H), 7.55–7.49 (m, 4 H), 7.24 (d, J = 7.5 Hz, 1 H), 7.09–7.06 (m, 2 H). 13C NMR (125 MHz, CDCl3): δ = 141.9, 136.4, 133.9, 129.7, 128.2, 125.9, 124.8, 123.3, 121.2, 119, 111.7, 109. Anal. Calcd (%) for C14H10ClNO2S: C, 57.63; H, 3.45; N, 4.80. Found: C, 57.61; H, 3.47; N, 4.78. 7-Methyl-2-(phenylsulfonyl)-1H-indole (3p) 1 White solid (130.2 mg, 96% yield); mp 171–173 °C. 1H NMR (500 MHz, CDCl3): δ = 8.97 (br s, 1 H), 7.98 (d, J = 8.0 Hz, 2 H), 7.61–7.53 (m, 4 H), 7.20 (s, 1 H), 7.13–7.07 (m, 2 H), 2.50 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 141.1, 136.2, 134.2, 131.8, 130.2, 129.4, 129, 126.2, 122.9, 120.7, 119.6, 111, 19.7. Anal. Calcd (%) for C15H13NO2S: C, 66.40; H, 4.83; N, 5.16. Found: C, 66.37; H, 4.81; N, 5.15. 3-Methyl-2-(phenylsulfonyl)-1H-indole (3q) 8d White solid (120.7 mg 89% yield); mp 168–169 °C. 1H NMR (500 MHz, CDCl3): δ = 8.87 (br s, 1 H), 7.99 (d, J = 7.6 Hz, 2 H), 7.60–7.49 (m, 4 H), 7.43–7.40 (t, J = 7.6 Hz, 2 H), 7.18–7.15 (t, J = 7.6 Hz, 1 H), 2.53 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 141.5, 136.2, 133.5, 129.4, 128.2, 127, 126.1, 122.2, 120.5, 119.6, 112.1, 111.4, 8.8. Anal. Calcd (%) for C15H13NO2S: C, 66.40; H, 4.83; N, 5.16. Found: C, 66.42; H, 4.80; N, 5.13. 5-Bromo-2-[(4-chlorophenyl)sulfonyl]-1H-indole (3r) 8b Brown solid (127.8 mg, 69% yield); mp 183−186 °C. 1H NMR (500 MHz, CDCl3): δ = 8.85 (br s, 1 H), 8.02 (d, J = 7.0 Hz, 2 H), 7.81 (s, 1 H), 7.59 (d, J = 7.0 Hz, 2 H), 7.46 (d, J = 7.0 Hz, 1 H), 7.43 (d, J = 7.5, 1 H), 7.14 (d, J = 2.0 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 141.1, 140, 137.4, 136.3, 131, 130, 129.2, 129, 126.4, 115.8, 114.3, 108.5. Anal. Calcd (%) for C14H9BrClNO2S: C, 45.37; H, 2.45; N, 3.78. Found: C, 45.39; H, 2.44; N, 3.75. S-p-Tolyl-4-methylbenzenesulfonothioate (3aa) 9f White solid (194.9 mg 70% yield); mp 91–93 °C. 1H NMR (500 MHz, CDCl3): δ = 7.49 (d, J = 7.0 Hz, 2 H), 7.22–7.16 (m, 4 H), 7.14 (d, J = 7.0 Hz, 2 H), 2.36 (s, 3 H), 2.32 (s, 3 H). 1,2-Di-p-tolyldisulfane (3ab) 9f White solid (36.8, mg 15% yield); mp 45–48 °C. 1H NMR (400 MHz, CDCl3): δ = 7.42 (d, J = 8.0 Hz, 4 H), 7.12 (d, J = 8.0 Hz, 2 H), 2.35 (s, 6 H).