Synthesis 2017; 49(07): 1461-1480
DOI: 10.1055/s-0036-1588397
short review
© Georg Thieme Verlag Stuttgart · New York

Allenylation and Propargylation Reactions of Ketones, Aldehydes, Imines, and Iminium Ions Using Organoboronates and Related Derivatives

Thanaphat Thaima
School of Chemistry, University of Wollongong, Wollongong, New South Wales, 2522, Australia   eMail: chrhyl@uow.edu.au   eMail: spyne@uow.edu.au
,
Farzad Zamani
School of Chemistry, University of Wollongong, Wollongong, New South Wales, 2522, Australia   eMail: chrhyl@uow.edu.au   eMail: spyne@uow.edu.au
,
Christopher J. T. Hyland*
School of Chemistry, University of Wollongong, Wollongong, New South Wales, 2522, Australia   eMail: chrhyl@uow.edu.au   eMail: spyne@uow.edu.au
,
Stephen G. Pyne*
School of Chemistry, University of Wollongong, Wollongong, New South Wales, 2522, Australia   eMail: chrhyl@uow.edu.au   eMail: spyne@uow.edu.au
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 20. Dezember 2016

Accepted: 23. Dezember 2016

Publikationsdatum:
18. Januar 2017 (online)


§ These authors contributed equally.

Abstract

Allenyl- and propargylboronates have emerged as versatile reagents to effect regioselective propargylation or allenylation reactions of aldehydes, ketones, imines, and iminium ions. These boron-­derived reagents have the ability to undergo transmetalation reactions with other metals (Ag, Cu, In, and Zn), often using only catalytic amounts of these metals, leading to more facile and highly regioselective reactions. Enantioselective organocatalyzed reactions have also been developed using, chiral diols, aminophenols, and phosphoric ­acids. This short review highlights recent developments in this area.

1 Introduction

2 Synthesis of Homopropargylic and α-Allenyl Alcohols

2.1 Direct Synthesis of Racemic Homopropargylic and α-Allenyl ­Alcohols

2.2 Metal-Catalyzed Synthesis of Racemic Homopropargylic and α-Allenyl Alcohols

2.3 Enantioselective Synthesis of Homopropargylic Alcohols Using Chiral Allenylboronates

2.4 Enantioselective Synthesis of Homopropargylic Alcohols and α-Allenyl Alcohols Using Chiral Organocatalysts

2.5 Metal-Catalyzed Enantioselective Synthesis of Homopropargylic and α-Allenyl Alcohols

3 Synthesis of Homopropargylic and α-Allenyl Amines

3.1 Direct Synthesis of Homopropargylic Amines from Imines and Iminium Ions

3.2 Metal-Catalyzed Synthesis of Racemic Homopropargylic and α-Allenyl Amines

3.3 Enantioselective Synthesis of α-Allenyl Amines Using Catalytic Amounts of a Chiral Aminophenol

3.4 Metal-Catalyzed Diastereoselective Synthesis of Chiral Homopropargylic and α-Allenyl Amines from Chiral N-tert-Butylsulfinylimines

3.5 Metal-Catalyzed Enantioselective Synthesis of Chiral Homopropargylic and α-Allenyl Amines

4 Applications to Synthesis

5 Conclusions

 
  • References


    • For reviews see:
    • 1a Yu S, Ma S. Angew. Chem. Int. Ed. 2012; 51: 3074
    • 1b Ding C.-H, Hou X.-L. Chem. Rev. 2011; 111: 1914
    • 2a Yamamoto Y In Comprehensive Organic Synthesis . Vol. 2. Heathcock CH. Pergamon; Oxford: 1991: 81-87
    • 2b Marshall JA. J. Org. Chem. 2007; 72: 8153
    • 2c Yamamoto H, Usanov DL In Comprehensive Organic Synthesis . 2nd ed., Vol. 2; Knochel P, Molander GA. Elsevier; Amsterdam: 2014: 209-242
  • 3 Zwiefel G, Backlund SJ, Leung T. J. Am. Chem. Soc. 1978; 100: 5561
  • 4 For a review on allenylboronic acid pinacol ester see: Silverio DL, Lee KA, Hoveyda AH. In e-EROS Encyclopedia of Reagents for Organic Synthesis . Wiley; Chichester: 2015: 1-8

    • For recent reviews on enantioselective propargylation and allenylation reactions see:
    • 5a Ref. 1.
    • 5b Wisneiwska HM, Jarvo ER. J. Org. Chem. 2013; 78: 11629
  • 6 Blais J, L’Honore A, Soulie J, Cadiot P. J. Organomet. Chem. 1974; 78: 323
    • 7a Favre E, Gaudemar M. J. Organomet. Chem. 1974; 76: 297
    • 7b Favre E, Gaudemar M. J. Organomet. Chem. 1974; 76: 305
  • 8 Fandrick DR, Saha J, Fandrick KR, Sanyal S, Ogikubo J, Lee H, Roschangar F, Song JJ, Senanayake CH. Org. Lett. 2011; 13: 5616
  • 9 Fandrick DR, Fandrick KR, Reeves JT, Tan Z, Johnson CS, Lee H, Song JJ, Yee NK, Senanayake CH. Org. Lett. 2010; 12: 88
  • 10 Ikeda N, Arai I, Yamamoto H. J. Am. Chem. Soc. 1986; 108: 483
  • 11 Freitas JJ. R, Couto TR, Cavalcanti IH, Freitas JC. R, Barbosa QP. S, Oliveira RA. Tetrahedron Lett. 2016; 57: 760
  • 12 For a comprehensive discussion on the transition state structures for the addition of allylboronates to carbonyl compounds see: Lachance H, Hall DG. Org. React. 2008; 73: 1
  • 13 Fandrick DR, Reeves JT, Tan Z, Lee H, Song JJ, Yee NK, Senanayake CH. Org. Lett. 2009; 11: 5458
  • 14 Couto TR, Freitas JJ. R, Freitas JC. R, Cavalcanti IH, Menezes PH, Oliveira RA. Synthesis 2015; 47: 71
  • 15 Yamashita Y, Cui Y, Xie P, Kobayashi S. Org. Lett. 2015; 17: 6042
  • 16 Fandrick KR, Ogikubo J, Fandrick DR, Patel ND, Saha J, Lee H, Ma S, Grinberg N, Busacca CA, Senanayake CH. Org. Lett. 2013; 15: 1214
  • 17 Kohn BL, Ichiishi N, Jarvo ER. Angew. Chem. Int. Ed. 2013; 52: 4414
  • 18 Haruta R, Ishiguro M, Ikeda N, Yamamoto H. J. Am. Chem. Soc. 1982; 104: 7667
  • 19 Matsumoto Y, Naito M, Uozumi Y, Hayashi T. J. Chem. Soc., Chem. Commun. 1993; 1468
  • 20 Barnett DS, Schaus SE. Org. Lett. 2011; 13: 4020
  • 21 Silverio DL, Torker S, Pilyugina T, Viera EM, Snapper ML, Haeffner F, Hoveyda AH. Nature (London) 2013; 494: 216
  • 22 Lee KA, Silverio DL, Torker S, Robbins DW, Haeffner F, van der Mei FW, Hoveyda AH. Nat. Chem. 2016; 8: 768
  • 23 Jain P, Wang H, Houk KN, Antilla JC. Angew. Chem. Int. Ed. 2012; 51: 1391
  • 24 Reddy LR. Chem. Commun. 2012; 48: 9189
  • 25 Chen M, Roush WR. J. Am. Chem. Soc. 2012; 134: 10947
  • 26 Tsai AS, Chen M, Roush WR. Org. Lett. 2013; 15: 1568 ; corrigendum: Org. Lett. 2013, 15, 2325
  • 27 Fandrick DR, Fandrick KR, Reeves JT, Tan Z, Tang W, Capacci AG, Rodriguez S, Song J, Lee H, Yee NK, Senanayake CH. J. Am. Chem. Soc. 2010; 132: 7600
  • 28 Shi S.-L, Xu L.-W, Oisaki K, Kanai M, Shibasaki M. J. Am. Chem. Soc. 2010; 132: 6638
  • 29 Fandrick KR, Fandrick DR, Reeves JT, Gao J, Ma S, Li W, Lee H, Grinberg N, Lu B, Senanayake CH. J. Am. Chem. Soc. 2011; 133: 10332
  • 30 Wei X.-F, Shimizu Y, Kanai M. ACS Cent. Sci. 2016; 2: 21
  • 31 Fandrick DR, Reeves JT, Bakonyi JM, Nyalapatla PR, Tan Z, Niemeier O, Akalay D, Fandrick KR, Wohlleben W, Ollenberger S, Song JJ, Sun X, Qu B, Haddad N, Sanyal S, Shen S, Ma S, Byrne S, Chitroda A, Fuchs V, Narayanan BA, Grinberg N, Lee H, Yee N, Brenner M, Senanayake CH. J. Org. Chem. 2013; 78: 3592
  • 32 Thaima T, Pyne SG. Org. Lett. 2015; 17: 778
  • 33 Fandrick DR, Hart CA, Okafor IS, Mercadante MA, Sanyal S, Masters JT, Sarvestani M, Fandrick KR, Stockdill JL, Grinberg N, Gonnella N, Lee H, Senanayake CH. Org. Lett. 2016; 18: 6192
  • 34 Liepouri F, Bernasconi G, Petasis NA. Org. Lett. 2015; 17: 1628
  • 35 Chambers RK, Chaipukdee N, Thaima T, Kanokmedhakul K, Pyne SG. Eur. J. Org. Chem. 2016; 3765
  • 36 Kobayashi S, Kitanosono T, Ueno M. Synlett 2010; 2033
  • 37 Wu H, Haeffner F, Hoveyda AH. J. Am. Chem. Soc. 2014; 136: 3780
  • 38 Fandrick DR, Johnson CS, Fandrick KR, Reeves JT, Tan Z, Lee H, Song JJ, Yee NK, Senanayake CH. Org. Lett. 2010; 12: 748
  • 39 Fustero S, Herrera L, Lazaro R, Rodriguez E, Maestro MA, Mateu N, Barrio P. Chem. Eur. J. 2013; 19: 11776
  • 40 Wisniewska HM, Jarvo ER. Chem. Sci. 2011; 2: 807
  • 41 Osborne CA, Endean TB. D, Jarvo ER. Org. Lett. 2015; 17: 5340
  • 42 Huang Y.-Y, Chakrabarti A, Morita N, Schneider U, Kobayashi S. Angew. Chem. Int. Ed. 2011; 50: 11121
  • 43 Veiira EM, Haeffner F, Snapper ML, Hoveyda AH. Angew. Chem. Int. Ed. 2012; 51: 6618
  • 44 Mszar NW, Haeffner F, Hoveyda AH. J. Am. Chem. Soc. 2014; 136: 3362
  • 45 Sieber JD, Angeles-Dunham VV, Chennamadhavuni D, Fandrick DR, Haddad N, Grinberg N, Kurouski D, Lee H, Song J, Yee NK, Mattson AE, Senanayake CH. Adv. Synth. Catal. 2016; 358: 3062