Synthesis 2016; 48(24): 4471-4476
DOI: 10.1055/s-0036-1588343
paper
© Georg Thieme Verlag Stuttgart · New York

Chiron Approaches to the Antitumor Natural Product Fuzanin D

Yangguang Gao*a, b, Zhou Caob, Chengzhong Sub, Zefeng Chenc, Xianran Hea, b, Fei Dinga, b, Hang Lia, b, Yongmin Zhang*a, d
  • aInstitute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan 430056, P. R. of China   Email: sunlt413@jhun.edu.cn
  • bKey Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan 430056, P. R. of China
  • cChimie, IUT d’Orsay, Université Paris Sud, Plateau de Moulon, 91400 Orsay, France
  • dInstitut Parisien de Chimie Moléculaire, CNRS UMR 8232, Université Pierre et Marie Curie-Paris 6, 4 place Jussieu, 75005 Paris, France   Email: yongmin.zhang@upmc.fr
Further Information

Publication History

Received: 10 August 2016

Accepted after revision: 17 October 2016

Publication Date:
18 November 2016 (eFirst)

Abstract

Fuzanin D, a pyridine-containing natural product, which exhibits cytotoxic activity against DLD-1 cells, is synthesized in a concise manner using l-arabinose or ethyl l-lactate as chiral pool substrates in nine steps (14.4% overall yield) and six steps (30.8% overall yield), respectively. The key steps involve Wittig olefination and olefin cross-­metathesis.

Supporting Information

 
  • References

  • 1 Majumdar KC, Chattopadhyay SK. Heterocycles in Natural Product Synthesis . Wiley-VCH; Weinheim; 2011: 267
    • 2a Takekawa Y, Matsunaga S, van Soest RW. M, Fusetani N. J. Nat. Prod. 2006; 69: 1503
    • 2b Tsukamoto S, Takahashi M, Matsunaga S, Fusetani N, van Soest RW. M. J. Nat. Prod. 2000; 63: 682
    • 2c Schmidt G, Timm C, Köck M. Org. Biomol. Chem. 2009; 7: 3061
  • 3 Arai M, Ishida S, Setiawan A, Kobayashi M. Chem. Pharm. Bull. 2009; 57: 1136
    • 4a Musiol R, Serda M, Hensel-Bielowka S, Polanski J. Curr. Med. Chem. 2010; 17: 1960
    • 4b Nicholas GM, Molinski TF. Tetrahedron 2000; 56: 2921
    • 5a Cheng X.-F, Meng Z.-M, Chen Z.-L. Phytochemistry 1998; 49: 2193
    • 5b Eun JS, Seo S.-Y. Arch. Pharm. Res. 2009; 32: 1673
  • 6 Kem WR, Scott KN, Duncan JH. Experientia 1976; 32: 684
    • 7a Mukherjee S, Pal M. Drug Discovery Today 2013; 18: 389
    • 7b De Marino S, Iorizzi M, Zollo F, Debitus C, Menou JL, Ospina LF, Alcaraz MJ, Payá M. J. Nat. Prod. 2000; 63: 322
  • 8 Aida W, Ohtsuki T, Li X, Ishibashi M. Tetrahedron 2009; 65: 369
  • 9 Kumar SN, Sai Pavan Kumar CH. N. S, Srihari E, Kancharla S, Srinivas K, Shrivastava S, Naidu VG. M, Rao VJ. RSC Adv. 2014; 4: 8365
  • 10 Dunn AD. Org. Prep. Proced. Int. 1999; 31: 120
    • 11a Hollingsworth RI. J. Org. Chem. 1999; 64: 7633
    • 11b Gao Y.-G, Liu J, Wang L.-L, Xiao M, Du Y.-G. Eur. J. Org. Chem. 2014; 2092
  • 12 Thompson DK, Hubert CN, Wightman RH. Tetrahedron 1993; 49: 3827
    • 13a Rao BV, Lahiri S. J. Carbohydr. Chem. 1996; 15: 975
    • 13b Joshi BV, Moon HR, Fettinger JC, Marquez VE, Jacobson KA. J. Org. Chem. 2005; 70: 439
  • 14 Chavan SP, Praveen C, Ramakrishna G, Kalkote UR. Tetrahedron Lett. 2004; 45: 6027
    • 15a Schmidt B, Biernat A. Chem. Eur. J. 2008; 14: 6135
    • 15b Liu J, Liu Y, Zhang X, Zhang C.-L, Gao Y.-G, Wang L.-L, Du Y.-G. J. Org. Chem. 2012; 77: 9718
  • 16 Schlosser M, Christmann KF. Angew. Chem. Int. Ed. 1965; 4: 689
  • 17 Kim D, Lee J, Shim PJ, Lim JI, Doi T, Kim S. J. Org. Chem. 2002; 67: 772