Synthesis 2017; 49(01): 115-120
DOI: 10.1055/s-0036-1588318
paper
© Georg Thieme Verlag Stuttgart · New York

Bench-Stable and Recoverable Palladium(I) Dimer as an Efficient Catalyst for Heck Cross-Coupling

Theresa Sperger
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   Email: [email protected]
,
Christopher K. Stirner
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   Email: [email protected]
,
Franziska Schoenebeck*
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 01 August 2016

Accepted after revision: 31 August 2016

Publication Date:
29 September 2016 (online)


Abstract

The application of air- and moisture-stable dinuclear palladium(I) complex [Pd(μ-I)(Pt-Bu3)]2 as an efficient catalyst for the Heck cross-coupling reaction of aryl iodides and bromides with acrylates and styrenes is described. The developed protocol is robust and operationally simple and shows a high functional-group tolerance. The employed palladium(I) dimer catalyst is highly robust under these nucleophilic as well as elevated-temperature conditions, allowing its recovery after reaction completion and recycling.

Supporting Information

 
  • References

    • 2a Johansson Seechurn CC. C, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
    • 2b Colacot T. New Trends in Cross-Coupling: Theory and Applications . Royal Society of Chemistry; Cambridge: 2015
    • 2c Whitcombe NJ, Hii KK, Gibson SE. Tetrahedron 2001; 57: 7449
    • 2d Cabri W, Candiani I. Acc. Chem. Res. 1995; 28: 2
    • 2e Felpin F.-X, Nassar-Hardy L, Le Callonnec F, Fouquet E. Tetrahedron 2011; 67: 2815
    • 2f Beletskaya IP, Cheprakov AV. Chem. Rev. 2000; 100: 3009
    • 3a Shaughnessy KH, Kim P, Hartwig JF. J. Am. Chem. Soc. 1999; 121: 2123
    • 3b Littke AF, Fu GC. J. Org. Chem. 1999; 64: 10
  • 4 Littke AF, Fu GC. J. Am. Chem. Soc. 2001; 123: 6989
  • 5 Barnard C. Platin. Met. Rev. 2008; 52: 38
  • 6 Yin L, Liebscher J. Chem. Rev. 2007; 107: 133
    • 7a Organ MG, Chass GA, Fang D.-C, Hopkinson AC, Valente C. Synthesis 2008; 2776
    • 7b Valente C, Çalimsiz S, Hoi KH, Mallik D, Sayah M, Organ MG. Angew. Chem. Int. Ed. 2012; 51: 3314
    • 7c Kinzel T, Zhang Y, Buchwald SL. J. Am. Chem. Soc. 2010; 132: 14073
    • 7d Marion N, Nolan SP. Acc. Chem. Res. 2008; 41: 1440
    • 8a Stambuli JP, Kuwano R, Hartwig JF. Angew. Chem. Int. Ed. 2002; 41: 4746
    • 8b Prashad M, Mak XY, Liu Y, Repic O. J. Org. Chem. 2003; 68: 1163
    • 8c Hooper MW, Utsunomiya M, Hartwig JF. J. Org. Chem. 2003; 68: 2861
    • 8d Christmann U, Vilar R. Angew. Chem. Int. Ed. 2005; 44: 366
    • 8e Hama T, Culkin DA, Hartwig JF. J. Am. Chem. Soc. 2006; 128: 4976
    • 8f Hill LL, Crowell JL, Tutwiler SL, Massie NL, Hines C, Griffin ST, Rogers RD, Shaughnessy KH, Grasa GA, Johansson Seechurn CC. C, Li H, Colacot TJ, Chou J, Woltermann CJ. J. Org. Chem. 2010; 75: 6477
    • 8g Proutière F, Aufiero M, Schoenebeck F. J. Am. Chem. Soc. 2012; 134: 606
    • 8h Mamone P, Grunberg MF, Fromm A, Khan BA, Gooßen LJ. Org. Lett. 2012; 14: 3716
    • 9a Colacot T. Platin. Met. Rev. 2009; 53: 183
    • 9b Pd(I)–iodo dimer 2 was first synthesized by: Vilar R, Mingos DM. P, Cardin CJ. J. Chem. Soc., Dalton Trans. 1996; 4313
    • 9c An improved synthesis of the corresponding Pd(I)–bromo dimer 1 for commercial applications was developed by Colacot and co-workers (Patent): Colacot TJ, Hooper MW, Grasa GA. (Johnson Matthey) WO2011/12889A1, 2011
    • 10a Bonney KJ, Proutière F, Schoenebeck F. Chem. Sci. 2013; 4: 4434
    • 10b Kalvet I, Bonney KJ, Schoenebeck F. J. Org. Chem. 2014; 79: 12041
    • 11a Yin G, Kalvet I, Schoenebeck F. Angew. Chem. Int. Ed. 2015; 54: 6809
    • 11b Aufiero M, Sperger T, Tsang AS, Schoenebeck F. Angew. Chem. Int. Ed. 2015; 54: 10322
  • 12 Aufiero M, Scattolin T, Proutière F, Schoenebeck F. Organometallics 2015; 34: 5191

    • Mayr’s scale is based on the addition of nucleophiles to carbocations and Michael acceptors; see:
    • 13a Maji B, Stephenson DS, Mayr H. ChemCatChem 2012; 4: 993
    • 13b Richter D, Mayr H. Angew. Chem. Int. Ed. 2009; 48: 1958
    • 13c Kempf B, Hampel N, Ofial AR, Mayr H. Chem. Eur. J. 2003; 9: 2209
  • 14 31P NMR only shows the presence of the free phosphine ligand t-Bu3P. This is most likely a result of fast conversion of the Pd(I)–bromo dimer to the monophosphine Pd(0)–Pt-Bu3, an accumulation of which leads to decomposition to Pd black and free phosphine ligand. Please see ref. 12 for further information.