Synlett 2016; 27(19): 2705-2708
DOI: 10.1055/s-0036-1588307
letter
© Georg Thieme Verlag Stuttgart · New York

A Metal-Free Cross-Dehydrogenative Coupling Reaction of Amides to Access N-Alkylazoles

Zheng Zhu
College of Chemistry, Nanchang University, Xuefu Rd. 999, Nanchang 330031, P. R. of China   Email: smguo@ncu.edu.cn   Email: caihu@ncu.edu.cn
,
Yufeng Wang
College of Chemistry, Nanchang University, Xuefu Rd. 999, Nanchang 330031, P. R. of China   Email: smguo@ncu.edu.cn   Email: caihu@ncu.edu.cn
,
Mingmeng Yang
College of Chemistry, Nanchang University, Xuefu Rd. 999, Nanchang 330031, P. R. of China   Email: smguo@ncu.edu.cn   Email: caihu@ncu.edu.cn
,
Ling Huang
College of Chemistry, Nanchang University, Xuefu Rd. 999, Nanchang 330031, P. R. of China   Email: smguo@ncu.edu.cn   Email: caihu@ncu.edu.cn
,
Jiuhan Gong
College of Chemistry, Nanchang University, Xuefu Rd. 999, Nanchang 330031, P. R. of China   Email: smguo@ncu.edu.cn   Email: caihu@ncu.edu.cn
,
Shengmei Guo*
College of Chemistry, Nanchang University, Xuefu Rd. 999, Nanchang 330031, P. R. of China   Email: smguo@ncu.edu.cn   Email: caihu@ncu.edu.cn
,
Hu Cai*
College of Chemistry, Nanchang University, Xuefu Rd. 999, Nanchang 330031, P. R. of China   Email: smguo@ncu.edu.cn   Email: caihu@ncu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 04 July 2016

Accepted after revision: 08 August 2016

Publication Date:
25 August 2016 (online)


Abstract

An iodine-catalyzed cross-dehydrogenative coupling reaction of N-alkyl amides and azoles is reported. The catalytic system provides an efficient method for introducing amides onto azoles, especially onto benzotriazoles.

Supporting Information

 
  • References

    • 1a Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
    • 1b Cho SH, Kim JY, Kwak J, Chang S. Chem. Soc. Rev. 2011; 40: 5068
    • 1c Shi Z, Zhang C, Tang C, Jiao N. Chem. Soc. Rev. 2012; 41: 3381
    • 1d Campbell AN, Stahl SS. Acc. Chem. Res. 2012; 45: 851
    • 1e Jones KM, Klussmann M. Synlett 2012; 159
    • 1f Murahashi S.-i, Takaya H. Acc. Chem. Res. 2000; 33: 225
    • 1g Murahashi S.-i. Angew. Chem. Int. Ed. 1995; 34: 2443
    • 1h Sun C.-L, Li B.-J, Shi Z.-J. Chem. Rev. 2012; 111: 1293
    • 1i Wei CM, Li C.-J. J. Am. Chem. Soc. 2003; 125: 9584
    • 1j Li C.-J. Acc. Chem. Res. 2009; 42: 335
  • 3 Prasad KR, Suresh P, Ravikumar B, Reddy NV, Reddy KR. Tetrahedron Lett. 2014; 55: 6307
    • 4a Wang Z, Mo H, Cheng D, Bao W. Org. Biomol. Chem. 2012; 10: 4249
    • 4b Zhang L, Li C.-J. J. Am. Chem. Soc. 2006; 128: 4242
    • 4c Tsang AS.-K, Todd MH. Tetrahedron Lett. 2009; 50: 1199
    • 4d Kong S, Zhang L, Dai X, Tao L, Xie C, Shi L, Wang M. Adv. Synth. Catal. 2015; 357: 2453
    • 4e Qiu J, Zhang R. Org. Biomol. Chem. 2013; 11: 6008
    • 4f Wang H, Li X, Wu F, Wan B. Tetrahedron Lett. 2012; 53: 681
    • 4g Singh KN, Singh P, Singh P, Maheshwary Y, Kessar SV, Batra A. Synlett 2013; 24: 1963
    • 5a Zheng Z, Dian L, Yuan Y, Zhang-Negrerie D, Du Y, Zhao K. J. Org. Chem. 2014; 79: 7451
    • 5b Matcha K, Antonchick AP. Angew. Chem. Int. Ed. 2013; 52: 2082
    • 5c Narayan R, Matcha K, Antonchick AP. Chem. Eur. J. 2015; 21: 14678
    • 6a Nobuta T, Tada N, Fujiya A, Kariya A, Miura T, Itoh A. Org. Lett. 2013; 15: 574
    • 6b Huang H.-Y, Wu H.-R, Wei F, Wang D, Liu L. Org. Lett. 2015; 17: 3702
    • 6c Siddaraju Y, Prabhu KR. Org. Biomol. Chem. 2015; 13: 11651
    • 6d Waghmode NA, Kalbandhe AH, Thorat PB, Karade NN. Tetrahedron Lett. 2016; 57: 680
    • 6e Xu J, Zhang P, Li X, Gao Y, Wu J, Tang G, Zhao Y. Adv. Synth. Catal. 2014; 356: 3331
    • 6f Siddaraju Y, Lamani M, Prabhu KR. J. Org. Chem. 2014; 79: 3856
    • 6g Dhineshkumar J, Lamani M, Alagiri K, Prabhu KR. Org. Lett. 2013; 15: 1092
    • 6h Chen L, Shi E, Liu Z, Chen S, Wei W, Li H, Xu K, Wan X. Chem. Eur. J. 2011; 17: 4085
    • 7a Brahma S, Ray JK. Tetrahedron 2008; 64: 2883
    • 7b Muzart J. Tetrahedron 2009; 65: 8313
    • 7c Ding S, Jiao N. Angew. Chem. Int. Ed. 2012; 51: 9226
  • 8 Li Y, Xue D, Lu W, Wang C, Liu Z.-T, Xiao J. Org. Lett. 2014; 16: 66
  • 9 Lou S.-J, Xu D.-Q, Shen D.-F, Wang Y.-F, Liu Y.-K, Xu Z.-Y. Chem. Commun. 2012; 48: 11993
  • 10 Itoh M, Hirano K, Satoh T, Miura M. Org. Lett. 2014; 16: 2050
  • 11 Liu J, Yi H, Zhang X, Liu C, Liu R, Zhang G, Lei A. Chem. Commun. 2014; 50: 7636
    • 12a Guo S, Lu L, Gong J, Zhu Z, Xu F, Wei Z, Cai H. Org. Biomol. Chem. 2015; 13: 4426
    • 12b Guo S, Zhu Z, Lu L, Zhang W, Gong J, Cai H. Synlett 2015; 26: 543
    • 12c Guo S, Gong J, Lu L, Zhu Z, Cai H. Youji Huaxue 2015; 35: 1348
    • 12d Lu L, Guo S, Xiong Q, Liu S, Li X, Cai H. Synthesis 2014; 46: 2445
  • 13 Xia Q, Chen W. J. Org. Chem. 2012; 77: 9366
  • 14 Lao Z.-Q, Zhong W.-H, Lou Q.-H, Li Z.-J, Meng X.-B. Org. Biomol. Chem. 2012; 10: 7869
    • 15a Tang R.-Y, Xie Y.-X, Xie Y.-L, Xiang J.-N, Li J.-H. Chem. Commun. 2011; 47: 12867
    • 15b Shirakawa E, Uchiyama N, Hayashi T. J. Org. Chem. 2011; 76: 25
    • 15c Song R.-J, Tu Y.-Q, Zhu D.-Y, Zhang F.-M, Wang S.-H. Chem. Commun. 2015; 51: 749
  • 16 N-(1H-1,2,3-Benzotriazol-1-ylmethyl)-N-methylacetamide (3a); Typical Procedure A 50 mL Schlenk tube equipped with a stirrer bar was charged with KI (16.6 mg, 0.1 mmol), benzotriazole (59.5 mg, 0.5 mmol), DMA (2 mL), and K2S2O8 (270 mg, 1 mmol) under air. The mixture was then stirred at 80 °C for 6 h (TLC monitoring), poured into H2O (20 mL), and extracted with EtOAc (3 ×). Then the organic phase was evaporated under vacuum, and the crude product was purified by column chromatography [silica gel, PE–EtOAc (10:1 to 2:1)] to give a colorless oil; yield: 98 mg (96%); 1H NMR (400 MHz, CDCl3): d = 8.04 (d, J = 8.3 Hz, 1 H), 7.90 (d, J = 8.7 Hz, 1 H), 7.50 (t, J = 7.5 Hz, 1 H), 7.38 (t, J = 7.6 Hz, 1 H), 6.21 (s, 2 H), 3.11 (s, 3 H), 2.13 (s, 3 H). N-[(6-Chloro-1H-1,2,3-benzotriazol-1-yl)methyl]-N-methylacetamide (3b) and N-[(5-Chloro-1H-1,2,3-benzotriazol-1-yl)methyl]-N-methylacetamide (3b′) Combined yield: 113 mg (95%) 3b Colorless oil; 1H NMR (400 MHz, CDCl3): δ = 7.92–7.85 (m, 2 H), 7.28 (d, J = 8.9 Hz, 1 H), 6.09 (s, 2 H), 3.07 (s, 3 H), 2.08 (s, 3 H); 13C NMR (101 MHz, CDCl3): δ = 171.60, 144.66, 134.48, 133.03, 125.65, 120.47, 110.95, 57.72, 35.03, 21.60; HRMS: m/z [M + Na]+ calcd for C10H11ClN4NaO: 261.0514; found: 261.0512. 3b′ Colorless oil; 1H NMR (400 MHz, CDCl3): δ = 8.02 (s, 1 H), 7.88 (dd, J = 8.8, 1.4 Hz, 1 H), 7.48 – 7.43 (m, 1 H), 6.18 (d, J = 1.5 Hz, 2 H), 3.12 (d, J = 1.8 Hz, 3 H), 2.13 (d, J = 1.8 Hz, 3 H); 13C NMR (101 MHz, CDCl3): δ = 128.87, 118.91, 112.23, 57.83, 35.05, 21.63; HRMS: m/z [M + Na]+ calcd for C10H11ClN4NaO: 261.0514; found: 261.0512. N-[(5,6-Dimethyl-1H-1,2,3-benzotriazol-1-yl)methyl]-N-methylacetamide (3c) Colorless oil; yield: 84 mg (72%); 1H NMR (400 MHz, CDCl3): δ = 7.76 (s, 1 H), 7.61 (s, 1 H), 6.15 (s, 2 H), 3.08 (d, J = 1.3 Hz, 3 H), 2.40 (d, J = 9.4 Hz, 6 H), 2.13 (d, J = 1.3 Hz, 3 H); 13C NMR (101 MHz, CDCl3): δ = 171.48, 138.40, 134.22, 118.62, 110.22, 57.32, 34.82, 21.75, 20.93, 20.43; HRMS: m/z [M + Na]+ calcd for C12H16N4NaO: 255.1216; found: 255.1219.