Synlett 2017; 28(13): 1581-1585
DOI: 10.1055/s-0036-1588171
cluster
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Aerobic Oxidation and Oxygenation of Anilines and Acetaldehydes with Dioxygen for the Concise Synthesis of 2-Aroylquinolines

Ziyuan Li*
a   Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, P. R. of China   Email: liziyuan@scu.edu.cn
b   State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing 100191, P. R. of China   Email: jiaoning@pku.edu.cn
,
Xiaoyang Wang
b   State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing 100191, P. R. of China   Email: jiaoning@pku.edu.cn
,
Lifang Ma
a   Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, P. R. of China   Email: liziyuan@scu.edu.cn
,
Ning Jiao*
b   State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing 100191, P. R. of China   Email: jiaoning@pku.edu.cn
› Author Affiliations
Supported by: National Basic Research Program of China (Grant / Award Number: '2015CB856600')
Supported by: Peking University Health Science Center (Grant / Award Number: 'BMU20160541')
Supported by: National Young Top-Notch Talent Support Program
Supported by: Fundamental Research Funds for the Central Universities (Grant / Award Number: '2016SCU11020')
Supported by: National Natural Science Foundation of China (Grant / Award Number: '21325206', '21632001')
Further Information

Publication History

Received: 28 January 2017

Accepted after revision: 15 March 2017

Publication Date:
19 April 2017 (online)


Abstract

A concise and efficient aerobic oxidation and oxygenation approach for the construction of 2-aroylquinolines has been developed through copper-catalyzed annulation of anilines, acetaldehydes, and dioxygen. 2,2,6,6-Tetramethylpiperidine-1-oxyl was employed to direct the selectivity toward the desired 2-aroyl products. Molecular oxygen was used in this transformation as an environmentally benign source of oxygen.

Supporting Information

 
  • References

    • 1a Michael JP. Nat. Prod. Rep. 2001; 18: 543
    • 1b Funayama S. Murata K. Noshita T. Heterocycles 2001; 54: 1139
    • 1c Rouffet M. de Oliveira CA. F. Udi Y. Agrawal A. Sagi I. McCammon JA. Cohen SM. J. Am. Chem. Soc. 2010; 132: 8232
    • 1d Andrews S. Burgess SJ. Skaalrud D. Kelly JX. Peyton DH. J. Med. Chem. 2010; 53: 916
    • 1e Bhalla V. Vij V. Kumar M. Sharma PR. Kaur T. Org. Lett. 2012; 14: 1012
    • 2a Reux B. Nevalainen T. Raitio KH. Koskinen AM. P. Bioorg. Med. Chem. 2009; 17: 4441
    • 2b Nien C.-Y. Chen Y.-C. Kuo C.-C. Hsieh H.-P. Chang C.-Y. Wu J.-S. Wu S.-Y. Liou J.-P. Chang J.-Y. J. Med. Chem. 2010; 53: 2309
    • 2c Lee H.-Y. Chang J.-Y. Nien C.-Y. Kuo C.-C. Shih K.-H. Wu C.-H. Chang C.-Y. Lai W.-Y. Liou J.-P. J. Med. Chem. 2011; 54: 8517
    • 2d Lee H.-Y. Lee L.-W. Nien C.-Y. Kuo C.-C. Lin P.-Y. Chang C.-Y. Chang J.-Y. Liou J.-P. Org. Biomol. Chem. 2012; 10: 9593
    • 2e Tseng C.-H. Lin C.-K. Chen Y.-L. Hsu C.-Y. Wu H.-N. Tseng C.-K. Lee J.-C. Eur. J. Med. Chem. 2014; 79: 66
    • 3a Combes A. Bull. Soc. Chim. Fr. 1888; 49: 89
    • 3b Popp FD. McEwen WE. Chem. Rev. 1958; 58: 321
    • 3c Jones G. In: The Chemistry of Heterocyclic Compounds . Vol. 32. Weissberger A. Taylor EC. Wiley Interscience; New York: 1977: 119
    • 3d Curran TT. In: Name Reactions in Heterocyclic Chemistry . Li JJ. Corey EJ. Wiley Interscience; Hoboken: 2005: 390
    • 4a Skraup ZH. Monatsh. Chem. 1880; 1: 316
    • 4b Skraup ZH. Ber. Dtsch. Chem. Ges. 1880; 13: 2086
    • 4c Doebner O. von Miller W. Ber. Dtsch. Chem. Ges. 1883; 16: 2464
    • 4d Bergstrom FW. Chem. Rev. 1944; 35: 77
    • 4e Moore A. In Name Reactions in Heterocyclic Chemistry . Li JJ. Corey EJ. Wiley Interscience; Hoboken: 2005: 488
    • 4f Wu Y. Liu L. Li H. Wang D. Chen Y. J. Org. Chem. 2006; 71: 6592
    • 5a Friedländer P. Ber. Dtsch. Chem. Ges. 1882; 15: 2572
    • 5b Cheng C.-C. Yan S.-J. Org. React. (N. Y.) 1982; 28: 37
    • 5c Cho IS. Gong L. Muchowski JM. J. Org. Chem. 1991; 56: 7288
    • 5d Hsiao Y. Rivera NR. Yasuda N. Hughes DL. Reider PJ. Org. Lett. 2001; 3: 1101
    • 5e Pflum DA. In: Name Reactions in Heterocyclic Chemistry . Li JJ. Corey EJ. Wiley Interscience; Hoboken: 2005: 411
    • 6a Gómez I. Alonso E. Ramón DJ. Yus M. Tetrahedron 2000; 56: 4043
    • 6b Yin Z. Zhang Z. Kadow JF. Meanwell NA. Wang T. J. Org. Chem. 2004; 69: 1364
  • 7 Toh QY. McNally A. Vera S. Erdmann N. Gaunt MJ. J. Am. Chem. Soc. 2013; 135: 3772
    • 8a Fontana F. Minisci F. Barbosa MC. N. Vismara E. J. Org. Chem. 1991; 56: 2866
    • 8b Siddaraju Y. Lamani M. Prabhu KR. J. Org. Chem. 2014; 79: 3856

      For some reviews on transition-metal-catalyzed multicomponent annulation, see:
    • 9a Chen J.-R. Hu X.-Q. Lu L.-Q. Xiao W.-J. Chem. Rev. 2015; 115: 5301
    • 9b Majumdam P. Pati A. Patra M. Behera RK. Behera AK. Chem. Rev. 2014; 114: 2942
    • 9c Eftekhari-Sis B. Zirak M. Akbari A. Chem. Rev. 2013; 113: 2958
    • 9d Xu X. Doyle MP. Acc. Chem. Res. 2014; 47: 1396
    • 9e Malapit CA. Howell AR. J. Org. Chem. 2015; 80: 8489
    • 9f Estévez V. Villacampa M. Menéndez JC. Chem. Soc. Rev. 2014; 43: 4633
    • 9g Huang H. Cai J. Deng G.-J. Org. Biomol. Chem. 2016; 14: 1519
    • 9h Neuhaus JD. Willis MC. Org. Biomol. Chem. 2016; 14: 4986
    • 9i Chen Z. Liu Z. Cao G. Li H. Ren H. Adv. Synth. Catal. 2017; 359: 202

      For some recent examples of transition-metal-catalyzed multicomponent annulation, see:
    • 10a Wang C.-Q. Ye L. Feng C. Loh T.-P. J. Am. Chem. Soc. 2017; 139: 1762
    • 10b Hu Z. Dong J. Men Y. Lin Z. Cai J. Xu X. Angew. Chem. Int. Ed. 2017; 56: 1805
    • 10c Tang J. Li S. Liu Z. Zhao Y. She Z. Kadam VD. Gao G. Lan J. You J. Org. Lett. 2017; 19: 604
    • 10d Wu K. Meng L. Huang Z. Liu C. Qi X. Huai M. Lei A. Chem. Commun. (Cambridge) 2017; 53: 2294
    • 10e Liu B. Wang C.-Y. Hu M. Song R.-J. Chen F. Li J.-H. Chem. Commun. (Cambridge) 2017; 53: 1265
    • 10f Sun P. Gao S. Yang C. Guo S. Lin A. Yao H. Org. Lett. 2016; 18: 6464
    • 10g Guo S. Yuan K. Gu M. Lin A. Yao H. Org. Lett. 2016; 18: 5236
    • 10h He Z. Huang Y. ACS Catal. 2016; 6: 7814
    • 10i Jing C. Cheng Q.-Q. Deng Y. Arman H. Doyle MP. Org. Lett. 2016; 18: 4550
    • 10j Masuya Y. Tobisu M. Chatani N. Org. Lett. 2016; 18: 4312
    • 10k Zheng J. Li Z. Huang L. Wu W. Li J. Jiang H. Org. Lett. 2016; 18: 3514
    • 10l Shen B. Li B. Wang B. Org. Lett. 2016; 18: 2816
    • 10m Wan D. Li X. Jiang R. Feng B. Lan J. Wang R. You J. Org. Lett. 2016; 18: 2876
    • 10n Lv L. Li Z. Org. Lett. 2016; 18: 2264
    • 10o Sharma P. Liu R.-S. Chem. Eur. J. 2016; 22: 15881
    • 10p Kudo E. Shibata Y. Yamazaki M. Masutomi K. Miyauchi Y. Fukui M. Sugiyama H. Uekusa H. Satoh T. Miura M. Tanaka K. Chem. Eur. J. 2016; 22: 14190
    • 10q Mei R. Wang H. Warratz S. Macgregor SA. Ackermann L. Chem. Eur. J. 2016; 22: 6759
    • 10r Ghorpade S. Jadhav PD. Liu R.-S. Chem. Eur. J. 2016; 22: 2915
    • 10s Barauh S. Kaishap PP. Gogoi S. Chem. Commun. (Cambridge) 2016; 52: 13004
    • 10t Sheng J. Su X. Cao C. Chen C. Org. Chem. Front. 2016; 3: 501
    • 10u Hu W. Yu J. Liu S. Jiang Y. Cheng J. Org. Chem. Front. 2017; 4: 22
    • 10v Wang Q. Li X. Org. Chem. Front. 2016; 3: 1159
    • 10w Lade DM. Pawar AB. Org. Chem. Front. 2016; 3: 836
    • 10x Yan Q. Chen Z. Liu Z. Zhang Y. Org. Chem. Front. 2016; 3: 678
    • 10y Liu Y. Yang Y. Wu J. Wang X.-N. Chang J. Chem. Commun. (Cambridge) 2016; 52: 6801
    • 10z Yang Y. Li K. Cheng Y. Wan D. Li M. You J. Chem. Commun. (Cambridge) 2016; 52: 2872

      For some examples of transition-metal-catalyzed annulation from our group, see:
    • 11a Chen F. Shen T. Cui Y. Jiao N. Org. Lett. 2012; 14: 4926
    • 11b Wang Y. Chen C. Peng J. Li M. Angew. Chem. Int. Ed. 2013; 52: 5323
    • 11c Chen F. Huang X. Li X. Jiao N. Angew. Chem. Int. Ed. 2014; 53: 10495
    • 11d Li X. Li X. Jiao N. J. Am. Chem. Soc. 2015; 137: 9246
    • 11e Wang X. Jiao N. Org. Lett. 2016; 18: 2150
    • 11f Liang Y. Jiao N. Angew. Chem. Int. Ed. 2016; 55: 4035
    • 11g Li X. Pan J. Song S. Jiao N. Chem. Sci. 2016; 7: 5384
  • 12 Yan R. Liu X. Pan C. Zhou X. Li X. Kang X. Huang G. Org. Lett. 2013; 15: 4876
  • 13 Li Z. Huang X. Chen F. Zhang C. Wang X. Jiao N. Org. Lett. 2015; 17: 584
  • 14 See the Supporting Information for details.
  • 15 Phenyl(3-phenylquinolin-2-yl)methanone (9a); Typical Procedure To a reaction tube charged with CuNO3·3 H2O (12.1 mg, 0.05 mmol, 20 mol%) and TEMPO (78.1 mg, 0.5 mmol, 2 equiv) under O2 (1 atm) was added a solution of aniline (2a, 0.25 mmol, 1 equiv), phenylacetaldehyde (3a, 1 mmol, 4 equiv), and H2O (135 μL, 7.5 mmol, 30 equiv) in DMF (3 mL). The mixture was stirred at 100 °C for 12 h then cooled to r.t. The mixture was diluted with EtOAc, washed with sat. aq NaHCO3, water, and brine, dried (Na2SO4), and concentrated in vacuo to give dark residue that was purified by flash chromatography [silica gel, PE–EtOAc (50:1 to 30:1)] to give an off-white oil; yield: 55 mg (71%). 1H NMR (400 MHz, CDCl3): δ = 8.28 (s, 1 H), 8.19 (d, J = 8.4 Hz, 1 H), 7.86–7.94 (m, 3 H), 7.76–7.80 (m, 1 H), 7.64–7.68 (m, 1 H), 7.52–7.56 (m, 1 H), 7.38–7.41 (m, 4 H), 7.30–7.33 (m, 3 H). 13C NMR (100 MHz, CDCl3): δ = 195.1, 156.3, 146.1, 137.7, 137.2, 136.2, 134.1, 133.5, 130.5, 130.1, 129.7, 129.0, 128.6, 128.4, 128.1, 128.0, 127.9, 127.8. HRMS (ESI): m/z [M + H]+ calcd for C22H16NO: 310.1232; found: 310.1226.