Synlett 2017; 28(12): 1463-1466
DOI: 10.1055/s-0036-1588168
letter
© Georg Thieme Verlag Stuttgart · New York

Novel One-Pot Cyclization of the Blaise Reaction Intermediate and Arylglyoxals: The Synthesis of Substituted NH-Pyrroles

Zhiwei Chen*a, b, Hao Chena, b, Xiaofeng Yanga, b, Xiangqing Changa, b
  • aNational Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
  • bKey Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: chenzhiwei@zjut.edu.cn
Supported by: We are grateful for financial support from the National Natural Science Foundation of China Grant / Award number ‘21276237’, ‘21676253’
Further Information

Publication History

Received: 06 March 2017

Accepted after revision: 12 March 2017

Publication Date:
11 April 2017 (eFirst)

Abstract

A novel tandem Blaise reaction for the one-pot synthesis of substituted NH-pyrroles was described. The Blaise reaction intermediate, generated in situ from Reformatsky reagent and nitrile, reacted with arylglyoxals chemoselectively to afford a wide variety of substituted NH-pyrroles in good yields.

Supporting Information

 
  • References and Notes

    • 1a Fujita M. Nakao Y. Matsunaga S. Seiki M. Itoh Y. van Yamashita J. Soest RW. M. Fusetani N. J. Am. Chem. Soc. 2003; 125: 15700
    • 1b Furstner A. Angew. Chem. Int. Ed. 2003; 42: 3582
    • 1c Lindel T. Breckle G. Hochgurtel M. Volk C. Grube A. Kock M. Tetrahedron Lett. 2004; 45: 8149
    • 1d Grube A. Kock M. Org. Lett. 2006; 8: 4675
    • 2a Trofimov BA. Sobenina LN. Demenev AP. Mikhaleva AI. Chem. Rev. 2004; 104: 2481
    • 2b Battilocchio C. Poce G. Alfonso S. Porretta GC. Consalvi S. Bioorg. Med. Chem. 2013; 21: 3695
    • 2c Meshram H. Prasad MB. R. V. Kumar DA. Tetrahedron Lett. 2010; 51: 3477
    • 3a Manley JM. Kalman MJ. Conway BG. Ball CC. Havens JL. Vaidyanathan R. J. Org. Chem. 2003; 68: 6447
    • 3b Shiner CM. Lash TD. Tetrahedron 2005; 61: 11628
    • 4a Palacios F. Aparico D. Santos JM. Vicario J. Tetrahedron 2001; 57: 1961
    • 4b Trautwein AW. Süssmuth RD. Jung G. Bioorg. Med. Chem. Lett. 1998; 8: 2381
    • 5a Trost BM. Doherty GA. J. Am. Chem. Soc. 2000; 122: 3801
    • 5b Bimal KB. Susanta S. Indrani B. J. Org. Chem. 2004; 69: 213
    • 5c Chen J. Wu H. Zheng Z. Jin C. Zhang X. Su W. ­Tetrahedron Lett. 2006; 47: 5358
    • 5d Minetto G. Raveglia LF. Sega A. Taddei M. Eur. J. Org. Chem. 2005; 5277
    • 6a Bullington JL. Wolff RR. Jackson PF. J. Org. Chem. 2002; 67: 9439
    • 6b Katritzky AR. Zhang S. Wang M. Kolb HC. Steel PJ. J. Heterocycl. Chem. 2002; 39: 759
    • 7a Yan RL. Luo J. Wang CX. Ma CW. Huang GS. Liang YM. J. Org. Chem. 2010; 75: 5395
    • 7b Zhang YQ. Zhu DY. Li BS. Tu YQ. Liu JX. Lu Y. Wang SH. J. Org. Chem. 2012; 77: 4167
    • 7c Xin X. Wang D. Li X. Wan B. Angew. Chem. Int. Ed. 2012; 51: 1693 ; Angew. Chem.; 2012, 124, 1725
    • 7d Saito A. Konishi T. Hanzawa Y. Org. Lett. 2010; 12: 372
    • 8a Estévez V. Villacampa M. Menéndez JC. Chem. Soc. Rev. 2010; 39: 4402
    • 8b Maiti S. Biswas S. Jana U. J. Org. Chem. 2010; 75: 1674
    • 8c Liu W. Jiang H. Huang L. Org. Lett. 2010; 12: 312
    • 8d Lu Y. Fu X. Chen H. Du X. Jia X. Liu Y. Adv. Synth. Catal. 2009; 351: 129
    • 8e Morin MS. T. St-Cyr DJ. Arndtsen BA. Org. Lett. 2010; 12: 4916
    • 8f Hong D. Zhu Y. Li Y. Lin X. Lu P. Wang Y. Org. Lett. 2011; 13: 4668
    • 8g Herath A. Cosford ND. P. Org. Lett. 2010; 12: 5182
  • 9 Zhao MN. Liang H. Ren ZH. Guan ZH. Adv. Synth. Catal. 2013; 355: 221
    • 10a Blaise EE. C. R. Hebd. Seances Acad. Sci. 1901; 132: 478
    • 10b Blaise EE. C. R. Hebd. Seances Acad. Sci. 1901; 132: 978
    • 11a Rao HS. P. Rafi S. Padmavathy K. Tetrahedron 2008; 64: 8037
    • 11b Ocampo R. Dolbier WR. Jr. Tetrahedron 2004; 60: 9325
    • 11c Hoang CT. Bouillère F. Johannesen S. Zulauf A. Panel C. Pouilhès A. Gori D. Alezra V. Kouklovsky C. J. Org. Chem. 2009; 74: 4177
    • 12a Ko YO. Chun YS. Park C.-L. Kim Y. Shin H. Ahn S. Hong J. Lee S.-G. Org. Biomol. Chem. 2009; 7: 1132
    • 12b Chun YS. Ko YO. Shin H. Lee S.-G. Org. Lett. 2009; 11: 3414
    • 12c Ko YO. Chun YS. Kim Y. Kim SJ. Shin H. Lee S.-G. Tetrahedron Lett. 2010; 51: 6893
    • 12d Chun YS. Ryu KY. Kim JH. Shin H. Lee S.-G. Org. Biomol. Chem. 2011; 9: 1317
    • 12e Kim JH. Lee S.-G. Org. Lett. 2011; 13: 1350
  • 13 Kim JH. Chun YS. Shin H. Lee S.-G. Synthesis 2012; 44: 1809
  • 14 Chun YS. Ryu YK. Ko YO. Hong JY. Hong J. Shin H. Lee S.-g. J. Org. Chem. 2009; 74: 7556
    • 15a Xuan Z. Rathwell K. Lee S.-G. Asian J. Org. Chem. 2014; 3: 1108
    • 15b Khalili B. Jajarmi P. Eftekhari-Sis B. Hashemi MM. J. Org. Chem. 2008; 73: 2090
  • 16 General Procedure for the One-Pot Synthesis of 4a To a stirred suspension of commercial zinc dust (1.26 g, 19.5 mmol) was added methanesulfonic acid (3.7 mg, 0.37 mmol) in anhydrous THF (20 mL). After 10 min of reflux, benzonitrile (1.0 g, 9.7 mmol) was added all at once. While maintaining reflux temperature, ethyl bromoacetate (2.43 g, 14.5 mmol) was added over 1 h with use of a syringe pump, and the reaction mixture was further heated at reflux for 1 h. The reaction mixture was cooled to r.t., and then arylglyoxal (1.62 g, 10.6 mmol) was added. After being stirred for 0.5 h at r.t., the reaction mixture was quenched with sat. aq NH4Cl at r.t. and extracted with EtOAc (3 × 30 mL). The combined organic layer was dried with anhydrous MgSO4, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (EtOAc–hexane, 1:7 v/v) to afford product 4a (2.47 g, 8.0 mmol; 83%); light yellow solid, mp 156.6–157.4 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 11.42 (s, 1 H), 8.68 (s, 1 H), 7.84 (dd, J = 8.4, 1.0 Hz, 2 H), 7.60–7.53 (m, 2 H), 7.46–7.30 (m, 5 H), 7.11 (t, J = 7.4 Hz, 1 H), 4.17 (q, J = 7.2 Hz, 2 H), 1.14 (t, J = 7.2 Hz, 3 H). 13C NMR (100 MHz, DMSO-d 6): δ = 165.83, 143.72, 132.94, 131.17, 130.99, 129.18, 127.80, 127.47, 126.99, 124.26, 123.36, 112.97, 59.23, 13.62. ESI-MS: m/z 308.1 [M + H]+. ESI-HRMS: m/z calcd for C19H17NO3 [M + H]+: 308.1253; found: 308.1258.