Synlett 2017; 28(13): 1554-1557
DOI: 10.1055/s-0036-1588155
cluster
© Georg Thieme Verlag Stuttgart · New York

Selective Aerobic Oxidation of Primary Alcohols to Aldehydes

Masatoshi Shibuya*
Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan   Email: m-shibu@ps.nagoya-u.ac.jp
,
Keisuke Furukawa
Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan   Email: m-shibu@ps.nagoya-u.ac.jp
,
Yoshihiko Yamamoto
Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan   Email: m-shibu@ps.nagoya-u.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 10 January 2017

Accepted after revision: 16 February 2017

Publication Date:
08 March 2017 (online)

Abstract

The 2-azaadamantane-N-oxyl (AZADO)- and 9-azanoradamantane-N-oxyl (nor-AZADO)-catalyzed selective oxidation of primary alcohols to the corresponding aldehydes is described. The use of tert-butyl nitrite as the co-catalyst enables efficient aerobic oxidation in MeCN instead of previously reported AcOH; this is important for the selectivity of the reaction. The addition of a solution of saturated aqueous NaHCO3 after the completion of the reaction was effective to suppress the overoxidation of the product to the corresponding carboxylic acid during the workup.

Supporting Information

 
  • References and Notes


    • For general reviews for the oxidation of primary alcohols to aldehydes, see:
    • 2a Tidwell TT. Synthesis 1990; 857
    • 2b Ley SV. Norman J. Griffith WP. Marsden SP. Synthesis 1994; 639
    • 2c Luzzio FA. Org. React. 1998; 53: 1
    • 2d Tohma H. Kita Y. Adv. Synth. Catal. 2004; 346: 111
    • 2e Silva LF. Olofsson B. Nat. Prod. Rep. 2011; 28: 1722
    • 3a Corey EJ. Schmidt G. Tetrahedron Lett. 1979; 399
    • 3b Noyori R. Aoki M. Sato K. Chem. Commun. 2003; 1977
    • 4a Dugger RW. Ragan JA. Ripin DH. B. Org. Process Res. Dev. 2005; 9: 253
    • 4b Caron S. Dugger RW. Ruggeri SG. Ragan JA. Ripin DH. B. Chem. Rev. 2006; 106: 2943
    • 5a de Nooy AE. J. Besemer AC. van Bekkum H. Synthesis 1996; 1153
    • 5b Bobbitt JM. Brockner C. Merbouh N. Org. React. 2009; 74: 103
    • 5c Tebben L. Studer A. Angew. Chem. Int. Ed. 2011; 50: 5034
    • 6a Cella JA. Kelley JA. Kenehan EF. J. Org. Chem. 1975; 40: 1860
    • 6b Anelli PL. Biffi C. Montanari F. Quici S. J. Org. Chem. 1987; 52: 2559
    • 6c Einhorn J. Einhorn C. Ratajczak F. Pierre JL. J. Org. Chem. 1996; 61: 7452
    • 6d de Mico A. Margarita R. Parlanti L. Vescovi A. Piancatelli G. J. Org. Chem. 1997; 62: 6974
    • 6e de Luca L. Giacomelli G. Porcheddu A. Org. Lett. 2001; 3: 3041
    • 7a Zhao M. Li J. Mano E. Song Z. Tschaen DM. Grabowski EJ. J. Reider PJ. J. Org. Chem. 1999; 64: 2564
    • 7b Zanka A. Chem. Pharm. Bull. 2003; 51: 888
    • 8a Epp JB. Widlanski TS. J. Org. Chem. 1999; 64: 293
    • 8b De Luca L. Giacomelli G. Masala S. Porcheddu A. J. Org. Chem. 2003; 68: 4999
    • 9a Sheldon RA. Arends IW. C. E. Adv. Synth. Catal. 2004; 346: 1051
    • 9b Parmeggiani C. Cardona F. Green Chem. 2012; 14: 547
    • 9c Cao Q. Dornan LM. Rogan L. Hughes NL. Muldoon MJ. Chem. Commun. 2014; 50: 4524
    • 9d Ryland BL. Stahl SS. Angew. Chem. Int. Ed. 2014; 53: 2
    • 10a Liu RH. Liang XM. Dong CY. Hu XQ. J. Am. Chem. Soc. 2004; 126: 4112
    • 10b Wang N. Liu R. Chen J. Liang X. Chem. Commun. 2005; 5322
    • 10c Xie Y. Mo WM. Xu D. Shen ZL. Sun N. Hu BX. Hu XQ. J. Org. Chem. 2007; 72: 4288
    • 10d Wang X. Liu R. Jin Y. Liang X. Chem. Eur. J. 2008; 14: 2679
    • 10e He XJ. Shen ZL. Mo WM. Sun N. Hu BX. Hu XQ. Adv. Synth. Catal. 2009; 351: 89
    • 11a Shibuya M. Osada Y. Sasano Y. Tomizawa M. Iwabuchi Y. J. Am. Chem. Soc. 2011; 133: 6497
    • 11b Shibuya M. Nagasawa S. Osada Y. Iwabuchi Y. J. Org. Chem. 2014; 79: 10256
    • 11c Furukawa K. Inada H. Shibuya M. Yamamoto Y. Org. Lett. 2016; 18: 4230
  • 12 Hayashi M. Sasano Y. Nagasawa S. Shibuya M. Iwabuchi Y. Chem. Pharm. Bull. 2011; 59: 1570
    • 13a Lauber MB. Stahl SS. ACS Catal. 2013; 3: 2612
    • 13b Miles KC. Abrams ML. Landis CR. Stahl SS. Org. Lett. 2016; 18: 3590
    • 14a Sonobe T. Oisaki K. Kanai M. Chem. Sci. 2012; 3: 3249
    • 14b Kadoh Y. Tashiro M. Oisaki K. Kanai M. Adv. Synth. Catal. 2015; 357: 2193
  • 15 4-Phenylbutanal (7b); Typical Procedure To a solution of 4-phenylbutan-1-ol (7a, 45.8 mg, 0.305 mmol) and AZADO (2, 2.36 mg, 15.5 μmol) in MeCN (1.5 mL) was added TBN (92%, 7.9 μL, 61 μmol). The reaction mixture was stirred under an air atmosphere at r.t for 10 h. After the addition of a saturated aqueous NaHCO3 solution (3 mL), the resulting mixture was extracted with EtOAc (3 × 5 mL). The combined organic layer was dried over MgSO4, filtered, and the filtrate was concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (hexane–EtOAc, 20:1) to give 4-phenylbutanal (7b) as a colorless oil; 42.0 mg (93%). 1H NMR (400 MHz, CDCl3): δ = 9.56 (t, J = 1.6 Hz, 1 H), 7.34–7.25 (m, 2 H), 7.24–7.16 (m, 3 H), 2.66 (t, J = 7.6 Hz, 2 H), 2.45 (dt, J = 7.6, 1.6 Hz, 2 H), 1.97 (quint, J = 7.6 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 201.3, 140.2, 127.5, 125.1, 42.2, 34.0, 22.7. 3-Pentafluorophenylpropanal (11b) Colorless oil; 66.4 mg (80%). 1H NMR (400 MHz, CDCl3): δ = 9.81 (s, 1 H), 3.03 (t, J = 7.2 Hz, 2 H), 2.80 (t, J = 7.2 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 199.4, 145.0 (dm, J = 245 Hz), 140.0 (dm, J = 243 Hz), 137.5 (dm, J = 251 Hz), 113.3 (td, J = 18.1, 3.8 Hz), 42.5, 15.1. HRMS (DART): m/z calcd for C18H14F10NO3·NH4 [2M + NH4]+: 466.0865; found: 466.0858. 4-Methoxyphenylacetaldehyde (16b) Pale yellow oil; 56.8 mg (86%). 1H NMR (400 MHz, CDCl3): δ = 9.72 (t, J = 2.0 Hz, 1 H), 7.17–7.09 (m, 2 H), 6.95–6.85 (m, 2 H), 3.80 (s, 3 H), 3.62 (d, J = 2.0 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 199.6, 158.9, 130.6, 123.7, 114.4, 55.2, 49.7.