Synlett 2017; 28(06): 691-694
DOI: 10.1055/s-0036-1588117
letter
© Georg Thieme Verlag Stuttgart · New York

Ugi–Smiles Couplings of Purine Derivatives

Abdelbari Ben Abdessalem
a  Laboratoire de Synthèse Organique, CNRS, Ecole Polytechnique, ENSTA ParisTech- UMR 7652, Université Paris-Saclay, 828 Bd des Maréchaux, 91128 Palaiseau, France   Email: [email protected]
b  Laboratoire de Synthèse Heterocyclique, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Zarzouna, Tunisia   Email: [email protected]
,
Raoudha Abderrahim*
b  Laboratoire de Synthèse Heterocyclique, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Zarzouna, Tunisia   Email: [email protected]
,
Aurélie Dos Santos
a  Laboratoire de Synthèse Organique, CNRS, Ecole Polytechnique, ENSTA ParisTech- UMR 7652, Université Paris-Saclay, 828 Bd des Maréchaux, 91128 Palaiseau, France   Email: [email protected]
,
Laurent El Kaïm*
a  Laboratoire de Synthèse Organique, CNRS, Ecole Polytechnique, ENSTA ParisTech- UMR 7652, Université Paris-Saclay, 828 Bd des Maréchaux, 91128 Palaiseau, France   Email: [email protected]
,
Laurence Grimaud*
c  Ecole normale supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Département de Chimie, PASTEUR, 24, Rue Lhomond, 75005 Paris, France
d  Sorbonne Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005 Paris, France   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 04 September 2016

Accepted after revision: 14 November 2016

Publication Date:
05 December 2016 (online)


Abstract

Purines may be involved in Ugi–Smiles coupling as shown by the successful formation of thiocarboxamide derivatives from 6-mercaptopurine. This multicomponent coupling affords a very straightforward access to functionalized adenine derivatives, which are widely represented among natural products of medicinal interest.

Supporting Information

 
  • References and Notes

    • 1a El Kaïm L, Grimaud L, Oble J. Angew. Chem. Int. Ed. 2005; 44: 7961
    • 1b El Kaïm L, Gizolme M, Grimaud L, Oble J. J. Org. Chem. 2007; 72: 4169

    • For reviews on Ugi–Smiles reactions, see:
    • 1c El Kaïm L, Grimaud L. Mol. Diversity 2010; 14: 855
    • 1d El Kaïm L, Grimaud L. Eur. J. Org. Chem. 2014; 7749

      For reviews, see:
    • 2a Dömling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
    • 2b Bienaymé H, Hulme C, Oddon G, Schmitt P. Chem. Eur. J. 2000; 6: 3321
    • 2c Ugi I, Werner B, Dömling A. Molecules 2003; 8: 53
    • 2d Dömling A. Curr. Opin. Chem. Biol. 2002; 6: 306
    • 2e Multicomponent Reactions. Zhu J, Bienaymé H. Wiley-VCH; Weinheim: 2005
    • 2f Dömling A. Chem. Rev. 2006; 106: 17
    • 2g El Kaïm L, Grimaud L. Tetrahedron 2009; 65: 2153
    • 2h Multicomponent Reactions in Organic Synthesis. Zhu J, Wang Q, Wang M. Wiley-VCH; Weinheim: 2014
  • 3 Chéron N, El Kaïm L, Grimaud L, Fleurat-Lessard P. Chem. Eur. J. 2011; 17: 14929
    • 4a El Kaïm L, Gizolme M, Grimaud L, Oble J. Org. Lett. 2006; 8: 4019
    • 4b See also ref. 1c,d.
    • 5a Suhadolnik RJ. Nucleosides as Biological Probes. Wiley; New York: 1979
    • 5b Rosemeyer H. Chem. Biodiversity 2004; 1: 361
    • 5c Pizzorno G, Diasio RB, Cheng Y.-C. Pyrimidine and Purine Antimetabolites. In Holland-Frei Cancer Medicine. Wiley; Chichester: 2006. 7th ed. Chap. 43
    • 5d Sharma V, Chitranshi N, Agarwal AK. Int. J. Med. Chem. 2014; 1
  • 6 Ait Sidhoum M, El Kaïm L, Grimaud L. Synlett 2012; 23: 632
  • 8 As a comparison, 4-hydroxypyrimidine is slightly more acidic with a pKa of 8.5.
    • 9a El Kaïm L, Gizolme M, Grimaud L, Oble J. Synlett 2007; 465
    • 9b Barthelon A, El Kaïm L, Gizolme M, Grimaud L. Eur. J. Org. Chem. 2008; 5974
    • 9c Barthelon A, Legoff X.-F, El Kaïm L, Grimaud L. Synlett 2010; 153
  • 10 For a review, see: Karran P, Attard N. Nat. Rev. Cancer 2008; 8: 24
  • 11 Letham DS. Life Sci. 1963; 8: 569
  • 12 Langen P. Antimetabolites of Nucleic Acid Metabolism. Gordon and Breach; New York: 1975
  • 13 Kang G, Zhao M, Zhang X, Peng L, Li C, Mao W, Ye W, Peng S. Bioorg. Med. Chem. Lett. 2010; 20: 6157
  • 14 Krasnov VP, Vigorov AY, Musiyak VV, Nizova IA, Gruzdev DA, Matveeva TV, Levit GL, Kravchenko MA, Skornyakov SN, Bekker OB, Danilenko VN, Charushin VN. Bioorg. Med. Chem. Lett. 2016; 26: 2645
  • 15 Buchanan JM In The Nucleic Acids. Vol. 3. Chargaff E, Davidson JN. Academic Press; New York/London: 1960: 303
    • 16a Lister JH. Purines. In The Chemistry of Heterocyclic Compounds. Wiley-Interscience; New York: 1971. Part 2 309-357
    • 16b Lister JH. Purines. In The Chemistry of Heterocyclic Compounds. Wiley-Interscience; New York: 1996. Suppl. 1 213-281

    • Direct formation of 6-aminopurines from 6-hydroxy derivatives may be obtained under activation with phosphonium salts such as BOP:
    • 16c Wan Z.-K, Binnun E, Wilson DP, Lee J. Org. Lett. 2005; 7: 5877
    • 17a Lister JH. Purines. In The Chemistry of Heterocyclic Compounds. Wiley-Interscience; New York: 1971. Part 2 282-283
    • 17b Elion GB, Burgi E, Hitchings GH. J. Am. Chem. Soc. 1952; 74: 411

    • The direct substitution of S-alkylthioether by amine is, however, easier to observe:
    • 17c Jones JW, Robins RK. J. Am. Chem. Soc. 1962; 84: 1914
  • 18 Saladino R, Mincione E, Crestini C, Mezzetti M. Tetrahedron 1996; 52: 6759
  • 19 Typical Procedure for 2a To solution of isovaleraldehyde (108 μL, 1.0 mmol) in DMF–MeCN (1:2; 0.6 mL, 1.6 M) was added, under argon atmosphere, allylamine (75 μL, 1.0 mmol), 6-mercaptopurine (152 mg, 1.0 mmol), and cyclohexyl isocyanide (125 μL, 1.0 mmol) respectively. The reaction contents were stirred and heated at 60 °C for 20 h, the solvents were removed under reduced pressure, and the crude reaction mixture was purified by flash column chromatography on silica gel (EtOAc–CH2Cl2, 10:90) to afford 2a as a white solid obtained in 58% yield (224 mg, 0.580 mmol); mp 185–186 °C; Rf = 0.4 (EtOAc–CH2Cl2, 40:60 ). 1H NMR (400 MHz CDCl3,): δ = 10.38 (br s, 1 H, NH), 8.46 (s, 1 H), 8.06 (s, 1 H), 6.44–6.30 (m, 1 H), 6.03 (ddd, J = 15.9, 10.1, 5.1 Hz, 1 H), 5.21 (d, J = 17.1 Hz, 1 H), 5.10 (d, J = 10.2 Hz, 1 H), 4.86–4.83 (m, 1 H), 4.59–4.56 (m, 1 H), 4.33–4.31 (m, 1 H), 2.09–2.06 (m, 3 H), 1.71–1.67 (m, 2 H), 1.62–1.49 (m, 3 H), 1.43–1.30 (m, 3 H), 1.24–1.17 (m, 2 H), 0.92 (d, J = 6.5 Hz, 3 H), 0.85 (d, J = 6.3 Hz, 3 H). 13C NMR (100.6 MHz, CDCl3): δ = 200.0, 154.9, 151.6, 151.1, 136.9, 135.2, 119.0, 116.1, 61.4, 53.1, 46.6, 41.0, 31.1, 30.7, 25.6, 24.8, 24.3, 24.2, 22.8, 22.5. HRMS: m/z calcd for C20H30N6S: 386.2253; found: 386.2244. IR (thin film): 3211, 3038, 2929, 2852, 1567, 1503, 1442, 1329, 1264, 1108 cm–1.