Synthesis 2017; 49(06): 1371-1379
DOI: 10.1055/s-0036-1588103
paper
© Georg Thieme Verlag Stuttgart · New York

Highly Efficient Synthesis of N-Sulfonylamidines via Silver-Catalyzed­ or Metal-Free Thermally Promoted Denitrogenative Amination of N-Sulfonyl-1,2,3-triazoles

Yue Feng
a   Department of Chemistry, Northeast Normal University, 5268 Renmin Street, 130024 Changchun, P. R. of China   eMail: lixq653@nenu.edu.cn
,
Wanjia Zhou
a   Department of Chemistry, Northeast Normal University, 5268 Renmin Street, 130024 Changchun, P. R. of China   eMail: lixq653@nenu.edu.cn
,
Ge Sun
b   College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, 161006 Qiqihar, P. R. of China
,
Peiqiu Liao
a   Department of Chemistry, Northeast Normal University, 5268 Renmin Street, 130024 Changchun, P. R. of China   eMail: lixq653@nenu.edu.cn
,
Xihe Bi*
a   Department of Chemistry, Northeast Normal University, 5268 Renmin Street, 130024 Changchun, P. R. of China   eMail: lixq653@nenu.edu.cn
c   State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. of China
,
Xingqi Li*
a   Department of Chemistry, Northeast Normal University, 5268 Renmin Street, 130024 Changchun, P. R. of China   eMail: lixq653@nenu.edu.cn
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 21. September 2016

Accepted after revision: 27. Oktober 2016

Publikationsdatum:
28. November 2016 (online)


Abstract

A highly efficient synthesis of N-sulfonylamidines from N-sulfonyl-1,2,3-triazoles and amines is reported. This transformation undergoes silver-catalyzed or metal-free thermally promoted denitrogenation of N-sulfonyl-1,2,3-triazoles to afford N-sulfonylketenimine intermediates and subsequent nucleophilic addition with amines. The amine plays dual roles as base and nucleophile.

Supporting Information

 
  • References

    • 1a Lee MY, Kim MH, Kim J, Kim SH, Kim BT, Jeong IH, Chang S, Kim SH, Chang SY. Bioorg. Med. Chem. Lett. 2010; 20: 541
    • 1b Chang SY, Bae SJ, Lee MY, Baek SH, Chang S, Kim SH. Bioorg. Med. Chem. Lett. 2011; 21: 727
    • 1c Song ZL, Chen HL, Wang YH, Goto M, Gao WJ, Cheng PL, Morris-Natschke SL, Liu YQ, Zhu GX, Wang MJ, Lee KH. Bioorg. Med. Chem. Lett. 2015; 25: 2690
    • 1d Suja TD, Divya KV. L, Naik LV, Kumar AR, Kamal A. Bioorg. Med. Chem. Lett. 2016; 26: 2072
    • 1e Deprez P, Heckmann B, Corbier A, Vevert JP, Fortin M, Guillaume J. Bioorg. Med. Chem. Lett. 1995; 5: 2605
    • 1f Heitsch H, Becker RH. A, Kleemann HW, Wagner A. Bioorg. Med. Chem. 1997; 5: 673
    • 1g Vernier W, Chong W, Rewolinski D, Greasley S, Pauly T, Shaw M, Dinh D, Ferre RA, Nukui S, Ornelas M, Reyner E. Bioorg. Med. Chem. 2010; 18: 3307
    • 1h Toure BB, Miller-Moslin K, Yusu N, Perez L, Dore M, Joud C, Michael W, Dipietro L, Van Der Plas S, Mcewan M, Lenoir F, Hoe M, Karki R, Springer C, Sullivan J, Levine K, Fiorilla C, Xie X, Kulathila R, Herlihy K, Porter D, Visser M. ACS Med. Chem. Lett. 2013; 4: 186
    • 1i Liu Y, Zhao Y, Yang L, Zhou X, Feng G. Pestic. Biochem. Physiol. 2012; 102: 11
    • 1j Krstulović L, Ismaili H, Bajić M, Višnjevac A, Glavaš-Obrovac L, Žinić B. Croat. Chem. Acta. 2012; 85: 525
    • 1k Wang M, Liu Y, Chang L. J. Med. Chem. 2014; 57: 6008
    • 1l Graham SL, Shepard KL, Anderson PS, Baldwin JJ, Best DB, Christy ME, Freedman MB, Gautheron P, Habecker CN, Hoffman JM, Lyle PA, Michelson SR, Ponticello GS, Robb CM, Schwam H, Smith AM, Smith RL, Sondey JM, Strohmaier KM, Sugrue MF, Varga SL. J. Med. Chem. 1989; 32: 2548
    • 1m Scholz TH, Sondey JM, Randall WC, Schwam H, Thompson WJ, Mallorga PJ, Sugrue MF, Graham SL. J. Med. Chem. 1993; 36: 2134
    • 1n Bekhit AA, Ashour HM. A, Ghany YS. A, Bekhit AE. D. A, Baraka A. Eur. J. Med. Chem. 2008; 43: 456
    • 2a Sienkiewich P, Bielawski K, Bielawska A, Palka J. Environ. Toxicol. Pharmacol. 2005; 20: 118
    • 2b Greenhill JV, Lue P. Prog. Med. Chem. 1993; 30: 203
    • 2c Barker J, Kilner M. Coord. Chem. Rev. 1994; 133: 219
    • 2d Boyd GV In The Chemistry of Amidines and Imidates . Vol. 2. Patai S, Rappoport Z. Wiley; New York: 1991. Chap. 8
    • 3a Liu N, Tang BY, Chen Y, He L. Eur. J. Org. Chem. 2009; 2059
    • 3b Fleury LM, Wilson EE, Vogt M, Fan TJ, Oliver AG, Ashfeld BL. Angew. Chem. Int. Ed. 2013; 52: 11589
    • 3c Wang S, Wang Z, Zheng X. Chem. Commun. 2009; 7372
    • 3d Zhang L, Su JH, Wang S, Wan C, Zha Z, Du J, Wang Z. Chem. Commun. 2011; 47: 5488
    • 3e Xu X, Li X, Ma L, Ye N, Weng B. J. Am. Chem. Soc. 2008; 130: 14048
    • 3f Xu X, Ge Z, Cheng D, Ma L, Lu C, Zhang Q, Yao N, Li X. Org. Lett. 2010; 12: 897
    • 3g Xu Y, Wang Y, Zhu S. Synthesis 2000; 513
    • 3h Xu G, Xu B, Qin C, Zhu S. J. Fluorine Chem. 1997; 84: 25
    • 3i Chandna N, Chandak N, Kumar P, Kapoor JK, Sharma PK. Green Chem. 2013; 15: 2294
    • 3j Kim J, Stahl SS. J. Org. Chem. 2015; 80: 2448
    • 3k Chen S, Xu Y, Wan X. Org. Lett. 2011; 13: 6152
    • 3l Shainyan BA, Meshcheryakov VI, Sterkhova IV. Tetrahedron 2015; 71: 7906
    • 3m Dekorver KA, Johnson WL, Zhang Y, Hsung RP, Dai H, Deng J, Lohse AG, Zhang YS. J. Org. Chem. 2011; 76: 5092
    • 3n Yao M, Lu CD. Org. Lett. 2011; 13: 2782
  • 4 Bae I, Han H, Chang S. J. Am. Chem. Soc. 2005; 127: 2038
    • 5a Yavari I, Ahmadian S, Darjani MG, Solgi Y. Tetrahedron Lett 2011; 52: 668
    • 5b Ghasemi Z, Shojaei S, Shahrisa A. RSC Adv. 2016; 6: 56213
    • 5c Yoo EJ, Ahlquist M, Bae I, Sharpless KB, Fokin VV, Chang S. J. Org. Chem. 2008; 73: 5520
    • 5d Shang Y, He X, Hu J, Wu J, Zhang M, Yu S, Zhang Q. Adv. Synth. Catal. 2009; 351: 2709
    • 5e Mandal S, Gauniyal HM, Pramanik K, Mukhopadhyay B. J. Org. Chem. 2007; 72: 9753
    • 5f Xu X, Cheng D, Li J, Guo H, Yan J. Org. Lett. 2007; 9: 1585
    • 5g Yoo EJ, Bae I, Cho SH, Han H, Chang S. Org. Lett. 2006; 8: 1347
    • 5h Chang S, Lee MJ, Jung DY, Yoo EJ, Cho SH, Han SK. J. Am. Soc. Chem. 2006; 128: 12366
    • 5i Kim JY, Kim SH, Chang S. Tetrahedron Lett. 2008; 49: 1745
    • 5j Yoo EJ, Chang S. Org. Lett. 2008; 10: 1163
    • 6a Deng H, Zhao E, Li H, Lam JW. Y, Tang BZ. Macromolecules 2015; 48: 3180
    • 6b Lee IH, Kim H, Choi TL. J. Am. Chem. Soc. 2013; 135: 3760
    • 7a Sung K. J. Chem. Soc., Perkin Trans. 2 1999; 1169
    • 7b Whiting M, Fokin VV. Angew. Chem. Int. Ed. 2006; 45: 3157
  • 8 Ran RQ, Xiu SD, Li CY. Org. Lett. 2014; 16: 6394
    • 9a Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596
    • 9b Tornøe CW, Christensen C, Meldal M. J. Org. Chem. 2002; 67: 3057
    • 9c Raushel J, Fokin VV. Org. Lett. 2010; 12: 4952
    • 10a Fang GC, Bi XH. Chem. Soc. Rev. 2015; 44: 8124
    • 10b Liu JQ, Liu ZH, Liao PQ, Zhang L, Tu T, Bi XH. Angew. Chem. Int. Ed. 2015; 54: 10618
    • 10c Liu ZH, Liu JQ, Zhang L, Liao PQ, Song JN, Bi XH. Angew. Chem. Int. Ed. 2014; 53: 5305
    • 10d Liu JQ, Fang ZX, Zhang Q, Liu Q, Bi XH. Angew. Chem. Int. Ed. 2013; 52: 6953
    • 10e Bounar H, Liu Z, Zhang L, Guan X, Yang Z, Liao P, Bi X, Li X. Org. Biomol. Chem. 2015; 13: 8723
    • 10f Ning Y, Wu N, Yu H, Liao P, Li X, Bi X. Org. Lett. 2015; 17: 2198
    • 10g Meng X, Liao P, Liu J, Bi X. Chem. Commun. 2014; 50: 11837
    • 10h Liu Z, Liao P, Bi X. Org. Lett. 2014; 16: 3668
    • 10i Liu J, Liu Z, Wu N, Liao P, Bi X. Chem. Eur. J. 2014; 20: 2154
  • 11 Crystallographic data for 3a: space group P-1, a = 8.2090(6) Å, b = 11.2709(9) Å, c = 12.4772(10) Å, α = 114.679(1)°, β = 100.637(1)°, γ = 97.570(1)°, V = 1002.38(14) Å3, T = 293 K, Z = 2. CCDC 1491766 contains the supplementary crystallographic data for compound 3a reported in this paper. These da can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 12a Jiang Y, Sun R, Wang Q, Tang XY, Shi M. Chem. Commun. 2015; 51: 16968
    • 12b Sun R, Jiang Y, Tang XY, Shi M. Chem. Eur. J. 2016; 22: 5727