Int Arch Otorhinolaryngol 2017; 21(01): 46-57
DOI: 10.1055/s-0036-1583759
Original Research
Thieme-Revinter Publicações Ltda Rio de Janeiro, Brazil

Tonic Investigation Concept of Cervico-vestibular Muscle Afferents

Linda Josephine Dorn
1   Department of Otorhinolaryngology, Charité Universitätsmedizin, Berlin, Germany
,
Annabelle Lappat
2   Department of Otorhinolaryngology, Sankt Gertrauden Hospital, Berlin, Germany
,
Winfried Neuhuber
3   Institute of Anatomy, Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
,
Hans Scherer
1   Department of Otorhinolaryngology, Charité Universitätsmedizin, Berlin, Germany
,
Heidi Olze
1   Department of Otorhinolaryngology, Charité Universitätsmedizin, Berlin, Germany
,
Matthias Hölzl
4   Department of Otorhinolaryngology, Universitätsklinik Magdeburg, Magdeburg, Germany
› Author Affiliations
Further Information

Publication History

23 November 2015

24 February 2016

Publication Date:
05 May 2016 (online)

Abstract

Introduction Interdisciplinary research has contributed greatly to an improved understanding of the vestibular system. To date, however, very little research has focused on the vestibular system's somatosensory afferents. To ensure the diagnostic quality of vestibular somatosensory afferent data, especially the extra cranial afferents, stimulation of the vestibular balance system has to be precluded.

Objective Sophisticated movements require intra- and extra cranial vestibular receptors. The study's objective is to evaluate an investigation concept for cervico-vestibular afferents with respect to clinical feasibility.

Methods A dedicated chair was constructed, permitting three-dimensional trunk excursions, during which the volunteer's head remains fixed. Whether or not a cervicotonic provocation nystagmus (c-PN) can be induced with static trunk excursion is to be evaluated and if this can be influenced by cervical monophasic transcutaneous electrical nerve stimulation (c-TENS) with a randomized test group. 3D-video-oculography (VOG) was used to record any change in cervico-ocular examination parameters. The occurring nystagmuses were evaluated visually due to the small caliber of nystagmus amplitudes in healthy volunteers.

Results The results demonstrate: no influence of placebo-controlled c-TENS on the spontaneous nystagmus; a significant increase of the vertical nystagmus on the 3D-trunk-excursion chair in static trunk flexion with cervical provocation in all young healthy volunteers (n = 49); and a significant difference between vertical and horizontal nystagmuses during static trunk excursion after placebo-controlled c-TENS, except for the horizontal nystagmus during trunk torsion.

Conclusion We hope this cervicotonic investigation concept on the 3D trunk-excursion chair will contribute to new diagnostic and therapeutic perspectives on cervical pathologies in vestibular head-to-trunk alignment.

 
  • References

  • 1 Hanes DA. Perceptual centering of body segment orientation. J Vestib Res 2007; 17 (05/06) 251-270
  • 2 Chan YS, Lai CH, Shum DK. Bilateral otolith contribution to spatial coding in the vestibular system. J Biomed Sci 2002; 9 (6 Pt 2): 574-586
  • 3 Green AM, Angelaki DE. Coordinate transformations and sensory integration in the detection of spatial orientation and self-motion: from models to experiments. Prog Brain Res 2007; 165: 155-180
  • 4 Green AM, Shaikh AG, Angelaki DE. Sensory vestibular contributions to constructing internal models of self-motion. J Neural Eng 2005; 2 (3) S164-S179
  • 5 Scherer H, Clarke AH, Baetke F. [Physiology of the caloric equilibrium reaction. Consequences from results of space experiments in Spacelab 1, December 1983]. Laryngol Rhinol Otol (Stuttg) 1985; 64 (5) 263-268
  • 6 Parker DE. Spatial perception changes associated with space flight: implications for adaptation to altered inertial environments. J Vestib Res 2003; 13 (04/06) 331-343
  • 7 Neuhuber WL, Zenker W. Central distribution of cervical primary afferents in the rat, with emphasis on proprioceptive projections to vestibular, perihypoglossal, and upper thoracic spinal nuclei. J Comp Neurol 1989; 280 (2) 231-253
  • 8 Matsushita M, Gao X, Yaginuma H. Spinovestibular projections in the rat, with particular reference to projections from the central cervical nucleus to the lateral vestibular nucleus. J Comp Neurol 1995; 361 (2) 334-4
  • 9 Keirstead SA, Rose PK. Structure of the intraspinal projections of single, identified muscle spindle afferents from neck muscles of the cat. J Neurosci 1988; 8 (9) 3413-3426
  • 10 Thomson DB, Isu N, Wilson VJ. Responses of neurons of the cat central cervical nucleus to natural neck and vestibular stimulation. J Neurophysiol 1996; 76 (4) 2786-2789
  • 11 Kasper J, Schor RH, Wilson VJ. Response of vestibular neurons to head rotations in vertical planes. I. Response to vestibular stimulation. J Neurophysiol 1988; 60 (5) 1753-1764
  • 12 Holtmann S, Reiman V, Scherer H. Cervico-ocular eye movements in relation to different neck torsion velocities. Acta Otolaryngol Suppl 1989; 468: 191-196
  • 13 Hölzl M, Gabel P, Weikert S, Orawa H, Scherer H. [Influence of different head-trunk positions to the upbeat-nystagmus]. Laryngorhinootologie 2009; 88 (2) 92-100
  • 14 Ceyte H, Trousselard M, Barraud PA, Roux A, Cian C. Perceived head-trunk angle during microgravity produced by parabolic flight. Aviat Space Environ Med 2008; 79 (4) 420-423
  • 15 Bove M, Courtine G, Schieppati M. Neck muscle vibration and spatial orientation during stepping in place in humans. J Neurophysiol 2002; 88 (5) 2232-2241
  • 16 Hölzl M, Weikert S, Gabel P, Topp N, Orawa H, Scherer H. [Cervicoproprioceptive provocation of horizontal and vertical nystagmus in test subjects]. HNO 2008; 56 (10) 1013-1019
  • 17 Ladenbauer J, Minassian K, Hofstoetter US, Dimitrijevic MR, Rattay F. Stimulation of the human lumbar spinal cord with implanted and surface electrodes: a computer simulation study. IEEE Trans Neural Syst Rehabil Eng 2010; 18 (6) 637-645
  • 18 Mandellos D, Anastasopoulos D, Becker W. Smooth pursuit rather than visual signals mediate short-term adaptation of the cervico-ocular reflex in humans. Exp Brain Res 2006; 169 (2) 153-161
  • 19 Pettorossi VE, Manni E, Errico P, Ferraresi A, Bortolami R. Otolithic and extraocular muscle proprioceptive influences on the spatial organization of the vestibulo- and cervico-ocular quick phases. Acta Otolaryngol 1997; 117 (2) 139-142
  • 20 Bronstein AM, Morland AB, Ruddock KH, Gresty MA. Recovery from bilateral vestibular failure: implications for visual and cervico-ocular function. Acta Otolaryngol Suppl 1995; 520 (Pt 2): 405-407
  • 21 Doerr M, Thoden U. Eye movements during voluntary head motion with minimized cervical input. Arch Otorhinolaryngol 1989; 246 (1) 20-25
  • 22 Montfoort I, Van Der Geest JN, Slijper HP, De Zeeuw CI, Frens MA. Adaptation of the cervico- and vestibulo-ocular reflex in whiplash injury patients. J Neurotrauma 2008; 25 (6) 687-693
  • 23 Banks RW. An allometric analysis of the number of muscle spindles in mammalian skeletal muscles. J Anat 2006; 208 (6) 753-768
  • 24 Rijkaart DC, van der Geest JN, Kelders WP, de Zeeuw CI, Frens MA. Short-term adaptation of the cervico-ocular reflex. Exp Brain Res 2004; 156 (1) 124-128
  • 25 Kelders WP, Kleinrensink GJ, van der Geest JN , et al. The cervico-ocular reflex is increased in whiplash injury patients. J Neurotrauma 2005; 22 (1) 133-137
  • 26 Kelders WP, Kleinrensink GJ, van der Geest JN, Feenstra L, de Zeeuw CI, Frens MA. Compensatory increase of the cervico-ocular reflex with age in healthy humans. J Physiol 2003; 553 (Pt 1): 311-317
  • 27 Montfoort I, Kelders WP, van der Geest JN , et al. Interaction between ocular stabilization reflexes in patients with whiplash injury. Invest Ophthalmol Vis Sci 2006; 47 (7) 2881-2884
  • 28 Mergner T, Siebold C, Schweigart G, Becker W. Human perception of horizontal trunk and head rotation in space during vestibular and neck stimulation. Exp Brain Res 1991; 85 (2) 389-404
  • 29 Tjell C, Rosenhall U. Smooth pursuit neck torsion test: a specific test for cervical dizziness. Am J Otol 1998; 19 (1) 76-81
  • 30 Treleaven J, Jull G, LowChoy N. Smooth pursuit neck torsion test in whiplash-associated disorders: relationship to self-reports of neck pain and disability, dizziness and anxiety. J Rehabil Med 2005; 37 (4) 219-223
  • 31 Marti S, Bockisch CJ, Straumann D. Prolonged asymmetric smooth-pursuit stimulation leads to downbeat nystagmus in healthy human subjects. Invest Ophthalmol Vis Sci 2005; 46 (1) 143-149
  • 32 Treleaven J, Jull G, LowChoy N. The relationship of cervical joint position error to balance and eye movement disturbances in persistent whiplash. Man Ther 2006; 11 (2) 99-106
  • 33 Hülse M, Seifert K. [Cervicogenic head and neck pain]. HNO 2005; 53 (9) 804-809
  • 34 Scherer H. [Neck-induced vertigo]. Arch Otorhinolaryngol Suppl 1985; 2: 107-124
  • 35 Norré ME. Cervical vertigo. Diagnostic and semiological problem with special emphasis upon “cervical nystagmus”. Acta Otorhinolaryngol Belg 1987; 41 (3) 436-452
  • 36 Holtmann S, Reiman V, Schöps P. [Clinical significance of cervico-ocular reactions]. Laryngorhinootologie 1993; 72 (6) 306-310
  • 37 Weikert S, Gabel P, Orawa H, Scholz P, Scherer H, Hölzl M. [Investigations concerning the head-trunk-coordination]. Laryngorhinootologie 2008; 87 (4) 245-251
  • 38 Castro WH, Meyer SJ, Becke ME , et al. No stress—no whiplash? Prevalence of “whiplash” symptoms following exposure to a placebo rear-end collision. Int J Legal Med 2001; 114 (6) 316-322
  • 39 Bogduk N, Marsland A. The cervical zygapophysial joints as a source of neck pain. Spine 1988; 13 (6) 610-617
  • 40 Dreyfuss P, Michaelsen M, Fletcher D. Atlanto-occipital and lateral atlanto-axial joint pain patterns. Spine 1994; 19 (10) 1125-1131
  • 41 Prushansky T, Pevzner E, Gordon C, Dvir Z. Cervical radiofrequency neurotomy in patients with chronic whiplash: a study of multiple outcome measures. J Neurosurg Spine 2006; 4 (5) 365-373
  • 42 Lord SM, Barnsley L, Bogduk N. Percutaneous radiofrequency neurotomy in the treatment of cervical zygapophysial joint pain: a caution. Neurosurgery 1995; 36 (4) 732-739
  • 43 Sapir DA. Cutaneous application of ethyl chloride spray. Reg Anesth 1995; 20 (3) 260