Subscribe to RSS
DOI: 10.1055/s-0036-1582132
Stages of the Inflammatory Response in Pathology and Tissue Repair after Intracerebral Hemorrhage
Publication History
Publication Date:
23 May 2016 (online)
Abstract
Intracerebral hemorrhage (ICH) is a major health concern, with high rates of mortality and morbidity and no highly effective clinical interventions. Basic research in animal models of ICH has provided insight into its complex pathology, in particular revealing the role of inflammation in driving neuronal death and neurologic deficits after hemorrhage. The response to ICH occurs in four distinct phases: (1) initial tissue damage and local activation of inflammatory factors, (2) inflammation-driven breakdown of the blood–brain barrier, (3) recruitment of circulating inflammatory cells and subsequent secondary immunopathology, and (4) engagement of tissue repair responses that promote tissue repair and restoration of neurologic function. The development of CNS inflammation occurs over many days after initial hemorrhage and thus may represent an ideal target for treatment of the disease, but further research is required to identify the mechanisms that promote engagement of inflammatory versus anti-inflammatory pathways. In this review, the authors examine how experimental models of ICH have uncovered critical mediators of pathology in each of the four stages of the inflammatory response, and focus on the role of the immune system in these processes.
-
References
- 1 Mozaffarian D, Benjamin EJ, Go AS , et al; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation 2015; 131 (4) e29-e322
- 2 Aiyagari V. The clinical management of acute intracerebral hemorrhage. Expert Rev Neurother 2015; 15 (12) 1421-1432
- 3 Qureshi AI, Mendelow AD, Hanley DF. Intracerebral haemorrhage. Lancet 2009; 373 (9675) 1632-1644
- 4 Keep RF, Hua Y, Xi G. Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol 2012; 11 (8) 720-731
- 5 Felberg RA, Grotta JC, Shirzadi AL , et al. Cell death in experimental intracerebral hemorrhage: the “black hole” model of hemorrhagic damage. Ann Neurol 2002; 51 (4) 517-524
- 6 Xue M, Del Bigio MR. Intracerebral injection of autologous whole blood in rats: time course of inflammation and cell death. Neurosci Lett 2000; 283 (3) 230-232
- 7 Hammond MD, Taylor RA, Mullen MT , et al. CCR2+ Ly6C(hi) inflammatory monocyte recruitment exacerbates acute disability following intracerebral hemorrhage. J Neurosci 2014; 34 (11) 3901-3909
- 8 James ML, Warner DS, Laskowitz DT. Preclinical models of intracerebral hemorrhage: a translational perspective. Neurocrit Care 2008; 9 (1) 139-152
- 9 Gu Y, Hua Y, Keep RF, Morgenstern LB, Xi G. Deferoxamine reduces intracerebral hematoma-induced iron accumulation and neuronal death in piglets. Stroke 2009; 40 (6) 2241-2243
- 10 Takasugi S, Ueda S, Matsumoto K. Chronological changes in spontaneous intracerebral hematoma—an experimental and clinical study. Stroke 1985; 16 (4) 651-658
- 11 Rosenberg GA, Mun-Bryce S, Wesley M, Kornfeld M. Collagenase-induced intracerebral hemorrhage in rats. Stroke 1990; 21 (5) 801-807
- 12 MacLellan CL, Silasi G, Auriat AM, Colbourne F. Rodent models of intracerebral hemorrhage. Stroke 2010; 41 (10, Suppl): S95-S98
- 13 Xue M, Del Bigio MR. Comparison of brain cell death and inflammatory reaction in three models of intracerebral hemorrhage in adult rats. J Stroke Cerebrovasc Dis 2003; 12 (3) 152-159
- 14 Barratt HE, Lanman TA, Carmichael ST. Mouse intracerebral hemorrhage models produce different degrees of initial and delayed damage, axonal sprouting, and recovery. J Cereb Blood Flow Metab 2014; 34 (9) 1463-1471
- 15 Nakamura T, Xi G, Hua Y, Schallert T, Hoff JT, Keep RF. Intracerebral hemorrhage in mice: model characterization and application for genetically modified mice. J Cereb Blood Flow Metab 2004; 24 (5) 487-494
- 16 Babu R, Bagley JH, Di C, Friedman AH, Adamson C. Thrombin and hemin as central factors in the mechanisms of intracerebral hemorrhage-induced secondary brain injury and as potential targets for intervention. Neurosurg Focus 2012; 32 (4) E8
- 17 Huang F-P, Xi G, Keep RF, Hua Y, Nemoianu A, Hoff JT. Brain edema after experimental intracerebral hemorrhage: role of hemoglobin degradation products. J Neurosurg 2002; 96 (2) 287-293
- 18 Lee KR, Kawai N, Kim S, Sagher O, Hoff JT. Mechanisms of edema formation after intracerebral hemorrhage: effects of thrombin on cerebral blood flow, blood-brain barrier permeability, and cell survival in a rat model. J Neurosurg 1997; 86 (2) 272-278
- 19 Iida S, Baumbach GL, Lavoie JL, Faraci FM, Sigmund CD, Heistad DD. Spontaneous stroke in a genetic model of hypertension in mice. Stroke 2005; 36 (6) 1253-1258
- 20 Weinl C, Castaneda Vega S, Riehle H , et al. Endothelial depletion of murine SRF/MRTF provokes intracerebral hemorrhagic stroke. Proc Natl Acad Sci U S A 2015; 112 (32) 9914-9919
- 21 Qureshi AI, Ling GS, Khan J , et al. Quantitative analysis of injured, necrotic, and apoptotic cells in a new experimental model of intracerebral hemorrhage. Crit Care Med 2001; 29 (1) 152-157
- 22 Qureshi AI, Suri MFK, Ostrow PT , et al. Apoptosis as a form of cell death in intracerebral hemorrhage. Neurosurgery 2003; 52 (5) 1041-1047 , discussion 1047–1048
- 23 Suzuki J, Ebina T. Sequential changes in tissue surrounding ICH. In: Pia HW, Langmaid C, Zierski J, eds. Spontaneous Intracerebral Haematomas: Advances in Diagnosis and Therapy. Berlin, Heidelberg: Springer; 2012
- 24 Matz PG, Weinstein PR, Sharp FR. Heme oxygenase-1 and heat shock protein 70 induction in glia and neurons throughout rat brain after experimental intracerebral hemorrhage. Neurosurgery 1997; 40 (1) 152-160 , discussion 160–162
- 25 Qu Y, Chen-Roetling J, Benvenisti-Zarom L, Regan RF. Attenuation of oxidative injury after induction of experimental intracerebral hemorrhage in heme oxygenase-2 knockout mice. J Neurosurg 2007; 106 (3) 428-435
- 26 Hua Y, Keep RF, Hoff JT, Xi G. Brain injury after intracerebral hemorrhage: the role of thrombin and iron. Stroke 2007; 38 (2, Suppl): 759-762
- 27 Hua Y, Xi G, Keep RF, Hoff JT. Complement activation in the brain after experimental intracerebral hemorrhage. J Neurosurg 2000; 92 (6) 1016-1022
- 28 Ducruet AF, Zacharia BE, Hickman ZL , et al. The complement cascade as a therapeutic target in intracerebral hemorrhage. Exp Neurol 2009; 219 (2) 398-403
- 29 Donovan FM, Pike CJ, Cotman CW, Cunningham DD. Thrombin induces apoptosis in cultured neurons and astrocytes via a pathway requiring tyrosine kinase and RhoA activities. J Neurosci 1997; 17 (14) 5316-5326
- 30 Fujimoto S, Katsuki H, Ohnishi M, Takagi M, Kume T, Akaike A. Thrombin induces striatal neurotoxicity depending on mitogen-activated protein kinase pathways in vivo. Neuroscience 2007; 144 (2) 694-701
- 31 Chang P, Dong W, Zhang M , et al. Anti-necroptosis chemical necrostatin-1 can also suppress apoptotic and autophagic pathway to exert neuroprotective effect in mice intracerebral hemorrhage model. J Mol Neurosci 2014; 52 (2) 242-249
- 32 Ma Q, Chen S, Hu Q, Feng H, Zhang JH, Tang J. NLRP3 inflammasome contributes to inflammation after intracerebral hemorrhage. Ann Neurol 2014; 75 (2) 209-219
- 33 Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 2010; 11 (10) 700-714
- 34 Su X, Wang H, Kang D , et al. Necrostatin-1 ameliorates intracerebral hemorrhage-induced brain injury in mice through inhibiting RIP1/RIP3 pathway. Neurochem Res 2015; 40 (4) 643-650
- 35 Lei C, Lin S, Zhang C , et al. High-mobility group box1 protein promotes neuroinflammation after intracerebral hemorrhage in rats. Neuroscience 2013; 228: 190-199
- 36 Zhou Y, Xiong K-L, Lin S , et al. Elevation of high-mobility group protein box-1 in serum correlates with severity of acute intracerebral hemorrhage. Mediators Inflamm 2010; 2010 Article ID 142458
- 37 Knowland D, Arac A, Sekiguchi KJ , et al. Stepwise recruitment of transcellular and paracellular pathways underlies blood-brain barrier breakdown in stroke. Neuron 2014; 82 (3) 603-617
- 38 Schallner N, Pandit R, LeBlanc III R , et al. Microglia regulate blood clearance in subarachnoid hemorrhage by heme oxygenase-1. J Clin Invest 2015; 125 (7) 2609-2625
- 39 Wang J, Doré S. Heme oxygenase-1 exacerbates early brain injury after intracerebral haemorrhage. Brain 2007; 130 (Pt 6): 1643-1652
- 40 Nakamura T, Keep RF, Hua Y, Hoff JT, Xi G. Oxidative DNA injury after experimental intracerebral hemorrhage. Brain Res 2005; 1039 (1–2) 30-36
- 41 Wang J, Doré S. Heme oxygenase 2 deficiency increases brain swelling and inflammation after intracerebral hemorrhage. Neuroscience 2008; 155 (4) 1133-1141
- 42 Nakamura T, Keep RF, Hua Y, Schallert T, Hoff JT, Xi G. Deferoxamine-induced attenuation of brain edema and neurological deficits in a rat model of intracerebral hemorrhage. J Neurosurg 2004; 100 (4) 672-678
- 43 Ni W, Okauchi M, Hatakeyama T , et al. Deferoxamine reduces intracerebral hemorrhage-induced white matter damage in aged rats. Exp Neurol 2015; 272: 128-134
- 44 Okauchi M, Hua Y, Keep RF, Morgenstern LB, Schallert T, Xi G. Deferoxamine treatment for intracerebral hemorrhage in aged rats: therapeutic time window and optimal duration. Stroke 2010; 41 (2) 375-382
- 45 Cui H-J, He H-Y, Yang A-L , et al. Efficacy of deferoxamine in animal models of intracerebral hemorrhage: a systematic review and stratified meta-analysis. PLoS ONE 2015; 10 (5) e0127256
- 46 Selim M. Deferoxamine mesylate: a new hope for intracerebral hemorrhage: from bench to clinical trials. Stroke 2009; 40 (3, Suppl): S90-S91
- 47 Lee KR, Colon GP, Betz AL, Keep RF, Kim S, Hoff JT. Edema from intracerebral hemorrhage: the role of thrombin. J Neurosurg 1996; 84 (1) 91-96
- 48 Zheng G-Q, Wang X-T, Wang X-M , et al. Long-time course of protease-activated receptor-1 expression after intracerebral hemorrhage in rats. Neurosci Lett 2009; 459 (2) 62-65
- 49 Hamill CE, Mannaioni G, Lyuboslavsky P, Sastre AA, Traynelis SF. Protease-activated receptor 1-dependent neuronal damage involves NMDA receptor function. Exp Neurol 2009; 217 (1) 136-146
- 50 Lee S-T, Chu K, Jung K-H , et al. Memantine reduces hematoma expansion in experimental intracerebral hemorrhage, resulting in functional improvement. J Cereb Blood Flow Metab 2006; 26 (4) 536-544
- 51 Xue M, Hollenberg MD, Demchuk A, Yong VW. Relative importance of proteinase-activated receptor-1 versus matrix metalloproteinases in intracerebral hemorrhage-mediated neurotoxicity in mice. Stroke 2009; 40 (6) 2199-2204
- 52 Wu J, Yang S, Xi G, Fu G, Keep RF, Hua Y. Minocycline reduces intracerebral hemorrhage-induced brain injury. Neurol Res 2009; 31 (2) 183-188
- 53 Ryu J, Pyo H, Jou I, Joe E. Thrombin induces NO release from cultured rat microglia via protein kinase C, mitogen-activated protein kinase, and NF-kappa B. J Biol Chem 2000; 275 (39) 29955-29959
- 54 Amara U, Flierl MA, Rittirsch D , et al. Molecular intercommunication between the complement and coagulation systems. J Immunol 2010; 185 (9) 5628-5636
- 55 Xi G, Hua Y, Keep RF, Younger JG, Hoff JT. Systemic complement depletion diminishes perihematomal brain edema in rats. Stroke 2001; 32 (1) 162-167
- 56 Yang S, Nakamura T, Hua Y , et al. The role of complement C3 in intracerebral hemorrhage-induced brain injury. J Cereb Blood Flow Metab 2006; 26 (12) 1490-1495
- 57 Garrett MC, Otten ML, Starke RM , et al. Synergistic neuroprotective effects of C3a and C5a receptor blockade following intracerebral hemorrhage. Brain Res 2009; 1298: 171-177
- 58 Rynkowski MA, Kim GH, Garrett MC , et al. C3a receptor antagonist attenuates brain injury after intracerebral hemorrhage. J Cereb Blood Flow Metab 2009; 29 (1) 98-107
- 59 Delgado P, Cuadrado E, Rosell A , et al. Fas system activation in perihematomal areas after spontaneous intracerebral hemorrhage. Stroke 2008; 39 (6) 1730-1734
- 60 Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature 2015; 517 (7534) 311-320
- 61 King MD, Whitaker-Lea WA, Campbell JM, Alleyne Jr CH, Dhandapani KM. Necrostatin-1 reduces neurovascular injury after intracerebral hemorrhage. Int J Cell Biol 2014; 2014: 495817
- 62 Feng L, Chen Y, Ding R , et al. P2×7R blockade prevents NLRP3 inflammasome activation and brain injury in a rat model of intracerebral hemorrhage: involvement of peroxynitrite. J Neuroinflammation 2015; 12 (1) 190
- 63 Yuan B, Shen H, Lin L, Su T, Zhong S, Yang Z. Recombinant adenovirus encoding NLRP3 RNAi attenuate inflammation and brain injury after intracerebral hemorrhage. J Neuroimmunol 2015; 287: 71-75
- 64 Leemans JC, Cassel SL, Sutterwala FS. Sensing damage by the NLRP3 inflammasome. Immunol Rev 2011; 243 (1) 152-162
- 65 Taylor RA, Sansing LH. Microglial responses after ischemic stroke and intracerebral hemorrhage. Clin Dev Immunol 2013; 2013: 746068
- 66 Lin S, Yin Q, Zhong Q , et al. Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage. J Neuroinflammation 2012; 9 (1) 46
- 67 Yang Z, Liu Y, Yuan F , et al. Sinomenine inhibits microglia activation and attenuates brain injury in intracerebral hemorrhage. Mol Immunol 2014; 60 (2) 109-114
- 68 Li D, Lei C, Zhang S, Zhang S, Liu M, Wu B. Blockade of high mobility group box-1 signaling via the receptor for advanced glycation end-products ameliorates inflammatory damage after acute intracerebral hemorrhage. Neurosci Lett 2015; 609: 109-119
- 69 Xue M, Yong VW. Matrix metalloproteinases in intracerebral hemorrhage. Neurol Res 2008; 30 (8) 775-782
- 70 Power C, Henry S, Del Bigio MR , et al. Intracerebral hemorrhage induces macrophage activation and matrix metalloproteinases. Ann Neurol 2003; 53 (6) 731-742
- 71 Wang J, Tsirka SE. Neuroprotection by inhibition of matrix metalloproteinases in a mouse model of intracerebral haemorrhage. Brain 2005; 128 (Pt 7): 1622-1633
- 72 Tejima E, Zhao B-Q, Tsuji K , et al. Astrocytic induction of matrix metalloproteinase-9 and edema in brain hemorrhage. J Cereb Blood Flow Metab 2007; 27 (3) 460-468
- 73 Lee J-M, Yin K-J, Hsin I , et al. Matrix metalloproteinase-9 and spontaneous hemorrhage in an animal model of cerebral amyloid angiopathy. Ann Neurol 2003; 54 (3) 379-382
- 74 Zhao L, Arbel-Ornath M, Wang X , et al. Matrix metalloproteinase 9-mediated intracerebral hemorrhage induced by cerebral amyloid angiopathy. Neurobiol Aging 2015; 36 (11) 2963-2971
- 75 Rosell A, Ortega-Aznar A, Alvarez-Sabín J , et al. Increased brain expression of matrix metalloproteinase-9 after ischemic and hemorrhagic human stroke. Stroke 2006; 37 (6) 1399-1406
- 76 Abilleira S, Montaner J, Molina CA, Monasterio J, Castillo J, Alvarez-Sabín J. Matrix metalloproteinase-9 concentration after spontaneous intracerebral hemorrhage. J Neurosurg 2003; 99 (1) 65-70
- 77 Alvarez-Sabín J, Delgado P, Abilleira S , et al. Temporal profile of matrix metalloproteinases and their inhibitors after spontaneous intracerebral hemorrhage: relationship to clinical and radiological outcome. Stroke 2004; 35 (6) 1316-1322
- 78 Silva Y, Leira R, Tejada J, Lainez JM, Castillo J, Dávalos A ; Stroke Project, Cerebrovascular Diseases Group of the Spanish Neurological Society. Molecular signatures of vascular injury are associated with early growth of intracerebral hemorrhage. Stroke 2005; 36 (1) 86-91
- 79 Genersch E, Hayess K, Neuenfeld Y, Haller H. Sustained ERK phosphorylation is necessary but not sufficient for MMP-9 regulation in endothelial cells: involvement of Ras-dependent and -independent pathways. J Cell Sci 2000; 113 (Pt 23): 4319-4330
- 80 Chang C-F, Chen S-F, Lee T-S, Lee H-F, Chen S-F, Shyue S-K. Caveolin-1 deletion reduces early brain injury after experimental intracerebral hemorrhage. Am J Pathol 2011; 178 (4) 1749-1761
- 81 Cai P, Luo H, Xu H , et al. Recombinant ADAMTS 13 attenuates brain injury after intracerebral hemorrhage. Stroke 2015; 46 (9) 2647-2653
- 82 Lee MC, Heaney LM, Jacobson RL, Klassen AC. Cerebrospinal fluid in cerebral hemorrhage and infarction. Stroke 1975; 6 (6) 638-641
- 83 Kane PJ, Modha P, Strachan RD , et al. The effect of immunosuppression on the development of cerebral oedema in an experimental model of intracerebral haemorrhage: whole body and regional irradiation. J Neurol Neurosurg Psychiatry 1992; 55 (9) 781-786
- 84 Gong C, Hoff JT, Keep RF. Acute inflammatory reaction following experimental intracerebral hemorrhage in rat. Brain Res 2000; 871 (1) 57-65
- 85 Mracsko E, Javidi E, Na S-Y, Kahn A, Liesz A, Veltkamp R. Leukocyte invasion of the brain after experimental intracerebral hemorrhage in mice. Stroke 2014; 45 (7) 2107-2114
- 86 Sansing LH, Harris TH, Kasner SE, Hunter CA, Kariko K. Neutrophil depletion diminishes monocyte infiltration and improves functional outcome after experimental intracerebral hemorrhage. Acta Neurochir Suppl 2011; 111: 173-178
- 87 Hammond MD, Ai Y, Sansing LH. Gr1+ macrophages and dendritic cells dominate the inflammatory infiltrate 12 hours after experimental intracerebral hemorrhage. Transl Stroke Res 2012; 3 (1) s125-s131
- 88 Aronowski J, Hall CE. New horizons for primary intracerebral hemorrhage treatment: experience from preclinical studies. Neurol Res 2005; 27 (3) 268-279
- 89 Yao Y, Tsirka SE. The CCL2-CCR2 system affects the progression and clearance of intracerebral hemorrhage. Glia 2012; 60 (6) 908-918
- 90 Zhao X, Sun G, Zhang J , et al. Hematoma resolution as a target for intracerebral hemorrhage treatment: role for peroxisome proliferator-activated receptor gamma in microglia/macrophages. Ann Neurol 2007; 61 (4) 352-362
- 91 Yang F, Wang Z, Zhang JH , et al. Receptor for advanced glycation end-product antagonist reduces blood-brain barrier damage after intracerebral hemorrhage. Stroke 2015; 46 (5) 1328-1336
- 92 Sansing LH, Harris TH, Welsh FA, Kasner SE, Hunter CA, Kariko K. Toll-like receptor 4 contributes to poor outcome after intracerebral hemorrhage. Ann Neurol 2011; 70 (4) 646-656
- 93 Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FMV. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci 2011; 14 (9) 1142-1149
- 94 Wang Y-C, Zhou Y, Fang H , et al. Toll-like receptor 2/4 heterodimer mediates inflammatory injury in intracerebral hemorrhage. Ann Neurol 2014; 75 (6) 876-889
- 95 Fang H, Chen J, Lin S , et al. CD36-mediated hematoma absorption following intracerebral hemorrhage: negative regulation by TLR4 signaling. J Immunol 2014; 192 (12) 5984-5992
- 96 Hammond MD, Ambler WG, Ai Y, Sansing LH. α4 integrin is a regulator of leukocyte recruitment after experimental intracerebral hemorrhage. Stroke 2014; 45 (8) 2485-2487
- 97 Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat Rev Immunol 2011; 11 (11) 762-774
- 98 Titova E, Ostrowski RP, Kevil CG , et al. Reduced brain injury in CD18-deficient mice after experimental intracerebral hemorrhage. J Neurosci Res 2008; 86 (14) 3240-3245
- 99 Ma Q, Manaenko A, Khatibi NH, Chen W, Zhang JH, Tang J. Vascular adhesion protein-1 inhibition provides antiinflammatory protection after an intracerebral hemorrhagic stroke in mice. J Cereb Blood Flow Metab 2011; 31 (3) 881-893
- 100 Mracsko E, Veltkamp R. Neuroinflammation after intracerebral hemorrhage. Front Cell Neurosci 2014; 8: 388
- 101 Wasserman JK, Zhu X, Schlichter LC. Evolution of the inflammatory response in the brain following intracerebral hemorrhage and effects of delayed minocycline treatment. Brain Res 2007; 1180: 140-154
- 102 Moxon-Emre I, Schlichter LC. Neutrophil depletion reduces blood-brain barrier breakdown, axon injury, and inflammation after intracerebral hemorrhage. J Neuropathol Exp Neurol 2011; 70 (3) 218-235
- 103 Mayne M, Ni W, Yan HJ , et al. Antisense oligodeoxynucleotide inhibition of tumor necrosis factor-alpha expression is neuroprotective after intracerebral hemorrhage. Stroke 2001; 32 (1) 240-248
- 104 Masada T, Hua Y, Xi G, Yang GY, Hoff JT, Keep RF. Attenuation of intracerebral hemorrhage and thrombin-induced brain edema by overexpression of interleukin-1 receptor antagonist. J Neurosurg 2001; 95 (4) 680-686
- 105 King MD, Alleyne Jr CH, Dhandapani KM. TNF-alpha receptor antagonist, R-7050, improves neurological outcomes following intracerebral hemorrhage in mice. Neurosci Lett 2013; 542: 92-96
- 106 Fang H, Wang P-F, Zhou Y, Wang Y-C, Yang Q-W. Toll-like receptor 4 signaling in intracerebral hemorrhage-induced inflammation and injury. J Neuroinflammation 2013; 10 (1) 27
- 107 Ohnishi M, Katsuki H, Fukutomi C , et al. HMGB1 inhibitor glycyrrhizin attenuates intracerebral hemorrhage-induced injury in rats. Neuropharmacology 2011; 61 (5–6) 975-980
- 108 Zhao X, Zhang Y, Strong R, Zhang J, Grotta JC, Aronowski J. Distinct patterns of intracerebral hemorrhage-induced alterations in NF-kappaB subunit, iNOS, and COX-2 expression. J Neurochem 2007; 101 (3) 652-663
- 109 Wang J, Fields J, Zhao C , et al. Role of Nrf2 in protection against intracerebral hemorrhage injury in mice. Free Radic Biol Med 2007; 43 (3) 408-414
- 110 Zhao X, Sun G, Zhang J , et al. Transcription factor Nrf2 protects the brain from damage produced by intracerebral hemorrhage. Stroke 2007; 38 (12) 3280-3286
- 111 Zhao X, Sun G, Zhang J, Ting S-M, Gonzales N, Aronowski J. Dimethyl fumarate protects brain from damage produced by intracerebral hemorrhage by mechanism involving Nrf2. Stroke 2015; 46 (7) 1923-1928
- 112 Zhao X, Zhang Y, Strong R, Grotta JC, Aronowski J. 15d-Prostaglandin J2 activates peroxisome proliferator-activated receptor-gamma, promotes expression of catalase, and reduces inflammation, behavioral dysfunction, and neuronal loss after intracerebral hemorrhage in rats. J Cereb Blood Flow Metab 2006; 26 (6) 811-820
- 113 Flint AC, Conell C, Rao VA , et al. Effect of statin use during hospitalization for intracerebral hemorrhage on mortality and discharge disposition. JAMA Neurol 2014; 71 (11) 1364-1371
- 114 Tapia Pérez JH, Yildiz OC, Schneider T, Nimsky C. Meta-analysis of Statin Use for the Acute Therapy of Spontaneous Intracerebral Hemorrhage. J Stroke Cerebrovasc Dis 2015; 24 (11) 2521-2526
- 115 Karki K, Knight RA, Han Y , et al. Simvastatin and atorvastatin improve neurological outcome after experimental intracerebral hemorrhage. Stroke 2009; 40 (10) 3384-3389
- 116 Indraswari F, Wang H, Lei B , et al. Statins improve outcome in murine models of intracranial hemorrhage and traumatic brain injury: a translational approach. J Neurotrauma 2012; 29 (7) 1388-1400
- 117 Ewen T, Qiuting L, Chaogang T , et al. Neuroprotective effect of atorvastatin involves suppression of TNF-α and upregulation of IL-10 in a rat model of intracerebral hemorrhage. Cell Biochem Biophys 2013; 66 (2) 337-346
- 118 Antonopoulos AS, Margaritis M, Lee R, Channon K, Antoniades C. Statins as anti-inflammatory agents in atherogenesis: molecular mechanisms and lessons from the recent clinical trials. Curr Pharm Des 2012; 18 (11) 1519-1530
- 119 Yang D, Knight RA, Han Y , et al. Statins protect the blood brain barrier acutely after experimental intracerebral hemorrhage. J Behav Brain Sci 2013; 3 (1) 100-106
- 120 Seyfried DM, Han Y, Yang D , et al. Localization of bone marrow stromal cells to the injury site after intracerebral hemorrhage in rats. J Neurosurg 2010; 112 (2) 329-335
- 121 Wang Z, Cui C, Li Q , et al. Intracerebral transplantation of foetal neural stem cells improves brain dysfunction induced by intracerebral haemorrhage stroke in mice. J Cell Mol Med 2011; 15 (12) 2624-2633
- 122 Desai P, Prasad K. Dexamethasone is not necessarily unsafe in primary supratentorial intracerebral haemorrhage. J Neurol Neurosurg Psychiatry 1998; 65 (5) 799-800
- 123 Poungvarin N, Bhoopat W, Viriyavejakul A , et al. Effects of dexamethasone in primary supratentorial intracerebral hemorrhage. N Engl J Med 1987; 316 (20) 1229-1233
- 124 Emsley HCA, Smith CJ, Georgiou RF , et al; Acute Stroke Investigators. A randomised phase II study of interleukin-1 receptor antagonist in acute stroke patients. J Neurol Neurosurg Psychiatry 2005; 76 (10) 1366-1372
- 125 Chu K, Jeong S-W, Jung K-H , et al. Celecoxib induces functional recovery after intracerebral hemorrhage with reduction of brain edema and perihematomal cell death. J Cereb Blood Flow Metab 2004; 24 (8) 926-933
- 126 Fu Y, Hao J, Zhang N , et al. Fingolimod for the treatment of intracerebral hemorrhage: a 2-arm proof-of-concept study. JAMA Neurol 2014; 71 (9) 1092-1101
- 127 Gonzales NR, Shah J, Sangha N , et al. Design of a prospective, dose-escalation study evaluating the Safety of Pioglitazone for Hematoma Resolution in Intracerebral Hemorrhage (SHRINC). Int J Stroke 2013; 8 (5) 388-396
- 128 Yeatts SD, Palesch YY, Moy CS, Selim M. High dose deferoxamine in intracerebral hemorrhage (HI-DEF) trial: rationale, design, and methods. Neurocrit Care 2013; 19 (2) 257-266