Semin Neurol 2016; 36(02): 128-139
DOI: 10.1055/s-0036-1580720
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Promising Oral Compounds for the Treatment of Multiple Sclerosis: A Glance into the Future

Bernhard F. Décard
1   Department of Neurology, University Hospital Basel, Basel, Switzerland
,
Tobias Derfuss
1   Department of Neurology, University Hospital Basel, Basel, Switzerland
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
26. April 2016 (online)

Abstract

Recently, there have been major advances in the development of disease-modifying treatments for multiple sclerosis (MS) and new promising treatment compounds are on the horizon. The available drugs mainly target inflammatory components of MS; hence, there is an urgent need for new treatment approaches that focus on the neurodegenerative aspects of the disease. Innovative study designs and biomarkers such as neurofilament light chain and brain atrophy measurement could help to identify neuroprotective treatments for the progressive phase of MS.

Furthermore, there is increasing knowledge on the impact of dietary factors on MS (e.g., vitamin D). Although their exact role in the pathophysiology of MS is unclear, there are first hints that they might modulate the disease course. Randomized studies are necessary to evaluate the value of substitution therapies for these dietary factors. In this review, the authors focus on promising oral compounds and dietary factors that are in the early development stages for the treatment of MS.

 
  • References

  • 1 Lublin FD, Reingold SC, Cohen JA , et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 2014; 83 (3) 278-286
  • 2 Kuhle J, Disanto G, Lorscheider J , et al. Fingolimod and CSF neurofilament light chain levels in relapsing-remitting multiple sclerosis. Neurology 2015; 84 (16) 1639-1643
  • 3 Disanto G, Adiutori R, Dobson R , et al; International Clinically Isolated Syndrome Study Group. Serum neurofilament light chain levels are increased in patients with a clinically isolated syndrome. J Neurol Neurosurg Psychiatry 2016; 87 (2) 126-129
  • 4 Filippi M, Rocca MA. MRI evidence for multiple sclerosis as a diffuse disease of the central nervous system. J Neurol 2005; 252 (Suppl. 05) v16-v24
  • 5 Filippi M, Rocca MA, Barkhof F , et al; Attendees of the Correlation between Pathological MRI findings in MS workshop. Association between pathological and MRI findings in multiple sclerosis. Lancet Neurol 2012; 11 (4) 349-360
  • 6 Confavreux C, Vukusic S. Natural history of multiple sclerosis: a unifying concept. Brain 2006; 129 (Pt 3): 606-616
  • 7 Confavreux C, Vukusic S. Accumulation of irreversible disability in multiple sclerosis: from epidemiology to treatment. Clin Neurol Neurosurg 2006; 108 (3) 327-332
  • 8 Wolinsky JS, Narayana PA, Noseworthy JH , et al. Linomide in relapsing and secondary progressive MS: part II: MRI results. MRI Analysis Center of the University of Texas-Houston, Health Science Center, and the North American Linomide Investigators. Neurology 2000; 54 (9) 1734-1741
  • 9 Noseworthy JH, Wolinsky JS, Lublin FD , et al; North American Linomide Investigators. Linomide in relapsing and secondary progressive MS: part I: trial design and clinical results. Neurology 2000; 54 (9) 1726-1733
  • 10 Brunmark C, Runström A, Ohlsson L , et al. The new orally active immunoregulator laquinimod (ABR-215062) effectively inhibits development and relapses of experimental autoimmune encephalomyelitis. J Neuroimmunol 2002; 130 (1–2) 163-172
  • 11 Jönsson S, Andersson G, Fex T , et al. Synthesis and biological evaluation of new 1,2-dihydro-4-hydroxy-2-oxo-3-quinolinecarboxamides for treatment of autoimmune disorders: structure-activity relationship. J Med Chem 2004; 47 (8) 2075-2088
  • 12 Brück W, Wegner C. Insight into the mechanism of laquinimod action. J Neurol Sci 2011; 306 (1–2) 173-179
  • 13 Mishra MK, Wang J, Silva C, Mack M, Yong VW. Kinetics of proinflammatory monocytes in a model of multiple sclerosis and its perturbation by laquinimod. Am J Pathol 2012; 181 (2) 642-651
  • 14 Mishra MK, Wang J, Keough MB , et al. Laquinimod reduces neuroaxonal injury through inhibiting microglial activation. Ann Clin Transl Neurol 2014; 1 (6) 409-422
  • 15 Thöne J, Ellrichmann G, Seubert S , et al. Modulation of autoimmune demyelination by laquinimod via induction of brain-derived neurotrophic factor. Am J Pathol 2012; 180 (1) 267-274
  • 16 Brück W, Pförtner R, Pham T , et al. Reduced astrocytic NF-κB activation by laquinimod protects from cuprizone-induced demyelination. Acta Neuropathol 2012; 124 (3) 411-424
  • 17 Polman C, Barkhof F, Sandberg-Wollheim M, Linde A, Nordle O, Nederman T ; Laquinimod in Relapsing MS Study Group. Treatment with laquinimod reduces development of active MRI lesions in relapsing MS. Neurology 2005; 64 (6) 987-991
  • 18 Comi G, Pulizzi A, Rovaris M , et al; LAQ/5062 Study Group. Effect of laquinimod on MRI-monitored disease activity in patients with relapsing-remitting multiple sclerosis: a multicentre, randomised, double-blind, placebo-controlled phase IIb study. Lancet 2008; 371 (9630) 2085-2092
  • 19 Comi G, Jeffery D, Kappos L , et al; ALLEGRO Study Group. Placebo-controlled trial of oral laquinimod for multiple sclerosis. N Engl J Med 2012; 366 (11) 1000-1009
  • 20 Vollmer TL, Sorensen PS, Selmaj K , et al; BRAVO Study Group. A randomized placebo-controlled phase III trial of oral laquinimod for multiple sclerosis. J Neurol 2014; 261 (4) 773-783
  • 21 Barkhof F, Giovannoni G, Hartung H-P , et al. ARPEGGIO: a randomized, placebo-controlled study to evaluate oral laquinimod in patients with primary progressive multiple sclerosis (PPMS) (P7.210). Neurology 2015; 84 (14) 210
  • 22 Brinkmann V, Davis MD, Heise CE , et al. The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J Biol Chem 2002; 277 (24) 21453-21457
  • 23 Matloubian M, Lo CG, Cinamon G , et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 2004; 427 (6972) 355-360
  • 24 Forrest M, Sun S-Y, Hajdu R , et al. Immune cell regulation and cardiovascular effects of sphingosine 1-phosphate receptor agonists in rodents are mediated via distinct receptor subtypes. J Pharmacol Exp Ther 2004; 309 (2) 758-768
  • 25 Oo ML, Thangada S, Wu M-T , et al. Immunosuppressive and anti-angiogenic sphingosine 1-phosphate receptor-1 agonists induce ubiquitinylation and proteasomal degradation of the receptor. J Biol Chem 2007; 282 (12) 9082-9089
  • 26 Kappos L, Radue E-W, O'Connor P , et al; FREEDOMS Study Group. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med 2010; 362 (5) 387-401
  • 27 Cohen JA, Barkhof F, Comi G , et al; TRANSFORMS Study Group. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med 2010; 362 (5) 402-415
  • 28 Miller D, Cree B, Dalton C , et al. Study design and baseline characteristics of the INFORMS study: fingolimod in patients with primary progressive multiple sclerosis (P07.116). Neurology 2013;80(Meeting Abstracts 1):P07.116
  • 29 Miron VE, Ludwin SK, Darlington PJ , et al. Fingolimod (FTY720) enhances remyelination following demyelination of organotypic cerebellar slices. Am J Pathol 2010; 176 (6) 2682-2694
  • 30 Bigaud M, Guerini D, Billich A, Bassilana F, Brinkmann V. Second generation S1P pathway modulators: research strategies and clinical developments. Biochim Biophys Acta 2014; 1841 (5) 745-758
  • 31 Selmaj K, Li DKB, Hartung H-P , et al. Siponimod for patients with relapsing-remitting multiple sclerosis (BOLD): an adaptive, dose-ranging, randomised, phase 2 study. Lancet Neurol 2013; 12 (8) 756-767
  • 32 Olsson T, Boster A, Fernández Ó , et al. Oral ponesimod in relapsing-remitting multiple sclerosis: a randomised phase II trial. J Neurol Neurosurg Psychiatry 2014; 85 (11) 1198-1208
  • 33 Biswal S, Veldandi UK, Derne C, Golla G, Muhsen N, Legangneux E. Effect of oral siponimod (BAF312) on the pharmacokinetics and pharmacodynamics of a monophasic oral contraceptive in healthy female subjects. Int J Clin Pharmacol Ther 2014; 52 (11) 996-1004
  • 34 Pan S, Gray NS, Gao W , et al. Discovery of BAF312 (Siponimod), a Potent and Selective S1P Receptor Modulator. ACS Med Chem Lett 2013; 4 (3) 333-337
  • 35 Hartung H-P, Selmaj K, Li D , et al. Phase 2 BOLD extension study safety results for siponimod (BAF312) in patients with relapsing-remitting multiple sclerosis (P01.176). Neurology 2013;80(Meeting Abstracts 1):P01.176
  • 36 Kappos L, Bar-Or A, Cree B , et al. Siponimod (BAF312) for the treatment of secondary progressive multiple sclerosis: design of the phase 3 EXPAND trial. Mult Scler Relat Disord 2014; 3 (6) 752
  • 37 Brossard P, Derendorf H, Xu J, Maatouk H, Halabi A, Dingemanse J. Pharmacokinetics and pharmacodynamics of ponesimod, a selective S1P1 receptor modulator, in the first-in-human study. Br J Clin Pharmacol 2013; 76 (6) 888-896
  • 38 Komiya T, Sato K, Shioya H , et al. Efficacy and immunomodulatory actions of ONO-4641, a novel selective agonist for sphingosine 1-phosphate receptors 1 and 5, in preclinical models of multiple sclerosis. Clin Exp Immunol 2013; 171 (1) 54-62
  • 39 Zipp F, Vollmer TL, Selmaj KW, Bar-Or A , on behalf of the DreaMS Study Group. Efficacy and safety of the S1P receptor agonist ONO-4641 in patients with relapsing-remitting multiple sclerosis: results of a 26-week, double-blind, placebo-controlled, phase II trial (DreaMS). P 482 ECTRIMS Meeting, Lyons, France, October 10–13, 2012
  • 40 Bar-Or A, Zipp F, Scaramozza M , et al. Effect of ceralifimod (ONO-4641), a sphingosine-1-phosphate receptor-1 and -5 agonist, on magnetic resonance imaging outcomes in patients with multiple sclerosis: interim results from the extension of the DreaMS study (P3.161). Neurology 2014; 82 (10 Suppl): P3.161
  • 41 Cohen JA, Arnold DL, Comi G, Bar-Or A, Gujrathi S, Hartung JP, Cravets M, Olson A, Frohna PA, Selmaj KW ; RADIANCE Study Group. Safety and efficacy of the selective sphingosine 1-phosphate receptor modulator ozanimod in relapsing multiple sclerosis (RADIANCE): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol 2016; 15 (4) 373-381 . doi:10.1016/S1474-4422(16)00018-1. [Epub 2016 Feb 12]
  • 42 Selmaj K, Arnold D, Comi G , et al. Safety and tolerability results of the phase 2 portion of the RADIANCE trial: a randomized, double-blind, placebo-controlled trial of oral RPC1063 in relapsing multiple sclerosis (P7.199). Neurology 2015; 84 (14 Suppl): P7.199
  • 43 Kappos L, Arnold D, Bar-Or A , et al. MT-1303, a novel selective S1P1 receptor modulator in RRMS - results of a placebo controlled, double blind phase II trial (MOMENTUM). J Neurol Sci 2015; 357: e430-e431
  • 44 Nishi T, Miyazaki S, Takemoto T , et al. Discovery of CS-0777: a potent, selective, and orally active S1P1 agonist. ACS Med Chem Lett 2011; 2 (5) 368-372
  • 45 Rohatagi S, Zahir H, Moberly JB , et al. Use of an exposure-response model to aid early drug development of an oral sphingosine 1-phosphate receptor modulator. J Clin Pharmacol 2009; 49 (1) 50-62
  • 46 Moberly JB, Rohatagi S, Zahir H, Hsu C, Noveck RJ, Truitt KE. Pharmacological modulation of peripheral T and B lymphocytes by a selective sphingosine 1-phosphate receptor-1 modulator. J Clin Pharmacol 2012; 52 (7) 996-1006
  • 47 Moberly JB, Ford DM, Zahir H , et al. Pharmacological effects of CS-0777, a selective sphingosine 1-phosphate receptor-1 modulator: results from a 12-week, open-label pilot study in multiple sclerosis patients. J Neuroimmunol 2012; 246 (1–2) 100-107
  • 48 Xu J, Gray F, Henderson A , et al. Safety, pharmacokinetics, pharmacodynamics, and bioavailability of GSK2018682, a sphingosine-1-phosphate receptor modulator, in healthy volunteers. Clin Pharmacol Drug Dev 2014; 3 (3) 170-178
  • 49 Miller DH, Weber T, Grove R , et al. Firategrast for relapsing remitting multiple sclerosis: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol 2012; 11 (2) 131-139
  • 50 Grove RA, Shackelford S, Sopper S , et al. Leukocyte counts in cerebrospinal fluid and blood following firategrast treatment in subjects with relapsing forms of multiple sclerosis. Eur J Neurol 2013; 20 (7) 1032-1042
  • 51 Rolan P, Hutchinson M, Johnson K. Ibudilast: a review of its pharmacology, efficacy and safety in respiratory and neurological disease. Expert Opin Pharmacother 2009; 10 (17) 2897-2904
  • 52 Feng J, Misu T, Fujihara K , et al. Ibudilast, a nonselective phosphodiesterase inhibitor, regulates Th1/Th2 balance and NKT cell subset in multiple sclerosis. Mult Scler 2004; 10 (5) 494-498
  • 53 Kagitani-Shimono K, Mohri I, Fujitani Y , et al. Anti-inflammatory therapy by ibudilast, a phosphodiesterase inhibitor, in demyelination of twitcher, a genetic demyelination model. J Neuroinflammation 2005; 2 (1) 10
  • 54 Fujimoto T, Sakoda S, Fujimura H, Yanagihara T. Ibudilast, a phosphodiesterase inhibitor, ameliorates experimental autoimmune encephalomyelitis in Dark August rats. J Neuroimmunol 1999; 95 (1–2) 35-42
  • 55 Sommer N, Martin R, McFarland HF , et al. Therapeutic potential of phosphodiesterase type 4 inhibition in chronic autoimmune demyelinating disease. J Neuroimmunol 1997; 79 (1) 54-61
  • 56 Barkhof F, Hulst HE, Drulovic J, Uitdehaag BM, Matsuda K, Landin R ; MN166-001 Investigators. Ibudilast in relapsing-remitting multiple sclerosis: a neuroprotectant?. Neurology 2010; 74 (13) 1033-1040
  • 57 Fox R, Coffey C, Cudkowicz M , et al. NN 102/SPRINT-MS phase II trial of ibudilast in progressive MS: baseline characteristics (P7.214). Neurology 2015; 84 (14 Suppl): P7.214
  • 58 Friese MA, Schattling B, Fugger L. Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nat Rev Neurol 2014; 10 (4) 225-238
  • 59 Friese MA, Craner MJ, Etzensperger R , et al. Acid-sensing ion channel-1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system. Nat Med 2007; 13 (12) 1483-1489
  • 60 Vergo S, Craner MJ, Etzensperger R , et al. Acid-sensing ion channel 1 is involved in both axonal injury and demyelination in multiple sclerosis and its animal model. Brain 2011; 134 (Pt 2): 571-584
  • 61 Arun T, Tomassini V, Sbardella E , et al. Targeting ASIC1 in primary progressive multiple sclerosis: evidence of neuroprotection with amiloride. Brain 2013; 136 (Pt 1): 106-115
  • 62 McKee JB, Elston J, Evangelou N, Gerry S, Fugger L, Kennard C, Kong Y, Palace J, Craner M. Amiloride Clinical Trial In Optic Neuritis (ACTION) protocol: a randomised, double blind, placebo controlled trial. BMJ Open 2015; 5 (11) e009200 . Published online 2015 Nov 9. doi:10.1136/bmjopen-2015-009200
  • 63 Greenwood J, Steinman L, Zamvil SS. Statin therapy and autoimmune disease: from protein prenylation to immunomodulation. Nat Rev Immunol 2006; 6 (5) 358-370
  • 64 Greenwood J, Walters CE, Pryce G , et al. Lovastatin inhibits brain endothelial cell Rho-mediated lymphocyte migration and attenuates experimental autoimmune encephalomyelitis. FASEB J 2003; 17 (8) 905-907
  • 65 Youssef S, Stüve O, Patarroyo JC , et al. The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature 2002; 420 (6911) 78-84
  • 66 van der Most PJ, Dolga AM, Nijholt IM, Luiten PGM, Eisel ULM. Statins: mechanisms of neuroprotection. Prog Neurobiol 2009; 88 (1) 64-75
  • 67 Giannopoulos S, Katsanos AH, Tsivgoulis G, Marshall RS. Statins and cerebral hemodynamics. J Cereb Blood Flow Metab 2012; 32 (11) 1973-1976
  • 68 Paintlia AS, Paintlia MK, Khan M, Vollmer T, Singh AK, Singh I. HMG-CoA reductase inhibitor augments survival and differentiation of oligodendrocyte progenitors in animal model of multiple sclerosis. FASEB J 2005; 19 (11) 1407-1421
  • 69 Vollmer T, Key L, Durkalski V , et al. Oral simvastatin treatment in relapsing-remitting multiple sclerosis. Lancet 2004; 363 (9421) 1607-1608
  • 70 Sorensen PS, Lycke J, Erälinna J-P , et al; SIMCOMBIN study investigators. Simvastatin as add-on therapy to interferon β-1a for relapsing-remitting multiple sclerosis (SIMCOMBIN study): a placebo-controlled randomised phase 4 trial. Lancet Neurol 2011; 10 (8) 691-701
  • 71 Kamm CP, El-Koussy M, Humpert S , et al. Atorvastatin added to interferon β for relapsing multiple sclerosis: a randomized controlled trial. J Neurol 2012; 259 (11) 2401-2413
  • 72 Togha M, Karvigh SA, Nabavi M , et al. Simvastatin treatment in patients with relapsing-remitting multiple sclerosis receiving interferon beta 1a: a double-blind randomized controlled trial. Mult Scler 2010; 16 (7) 848-854
  • 73 Lanzillo R, Orefice G, Quarantelli M , et al. Atorvastatin combined to interferon to verify the efficacy (ACTIVE) in relapsing-remitting active multiple sclerosis patients: a longitudinal controlled trial of combination therapy. Mult Scler 2010; 16 (4) 450-454
  • 74 Rudick RA, Pace A, Rani MRS , et al. Effect of statins on clinical and molecular responses to intramuscular interferon beta-1a. Neurology 2009; 72 (23) 1989-1993
  • 75 Waubant E, Pelletier D, Mass M , et al; ITN STAyCIS Study Group; ITN020AI Study Management Team. Randomized controlled trial of atorvastatin in clinically isolated syndrome: the STAyCIS study. Neurology 2012; 78 (15) 1171-1178
  • 76 Tsakiri A, Kallenbach K, Fuglø D, Wanscher B, Larsson H, Frederiksen J. Simvastatin improves final visual outcome in acute optic neuritis: a randomized study. Mult Scler 2012; 18 (1) 72-81
  • 77 Chataway J, Schuerer N, Alsanousi A , et al. Effect of high-dose simvastatin on brain atrophy and disability in secondary progressive multiple sclerosis (MS-STAT): a randomised, placebo-controlled, phase 2 trial. Lancet 2014; 383 (9936) 2213-2221
  • 78 Munger KL, Levin LI, Hollis BW, Howard NS, Ascherio A. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA 2006; 296 (23) 2832-2838
  • 79 Munger KL, Köchert K, Simon KC , et al. Molecular mechanism underlying the impact of vitamin D on disease activity of MS. Ann Clin Transl Neurol 2014; 1 (8) 605-617
  • 80 Ascherio A, Munger KL, White R , et al. Vitamin D as an early predictor of multiple sclerosis activity and progression. JAMA Neurol 2014; 71 (3) 306-314
  • 81 Kappos L, Freedman MS, Polman CH , et al; BENEFIT Study Group. Effect of early versus delayed interferon beta-1b treatment on disability after a first clinical event suggestive of multiple sclerosis: a 3-year follow-up analysis of the BENEFIT study. Lancet 2007; 370 (9585) 389-397
  • 82 Kampman MT, Steffensen LH, Mellgren SI, Jørgensen L. Effect of vitamin D3 supplementation on relapses, disease progression, and measures of function in persons with multiple sclerosis: exploratory outcomes from a double-blind randomised controlled trial. Mult Scler 2012; 18 (8) 1144-1151
  • 83 Stein MS, Liu Y, Gray OM , et al. A randomized trial of high-dose vitamin D2 in relapsing-remitting multiple sclerosis. Neurology 2011; 77 (17) 1611-1618
  • 84 Soilu-Hänninen M, Aivo J, Lindström B-M , et al. A randomised, double blind, placebo controlled trial with vitamin D3 as an add on treatment to interferon β-1b in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 2012; 83 (5) 565-571
  • 85 Smolders J, Hupperts R, Barkhof F , et al; SOLAR study group. Efficacy of vitamin D3 as add-on therapy in patients with relapsing-remitting multiple sclerosis receiving subcutaneous interferon β-1a: a phase II, multicenter, double-blind, randomized, placebo-controlled trial. J Neurol Sci 2011; 311 (1–2) 44-49
  • 86 Munger KL, Ascherio A. Prevention and treatment of MS: studying the effects of vitamin D. Mult Scler 2011; 17 (12) 1405-1411
  • 87 Trapp BD, Stys PK. Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurol 2009; 8 (3) 280-291
  • 88 Sedel F, Papeix C, Bellanger A , et al. High doses of biotin in chronic progressive multiple sclerosis: a pilot study. Mult Scler Relat Disord 2015; 4 (2) 159-169
  • 89 Tourbah A, Frenay CL, Edan G , et al. Effect of MD1003 (high doses of biotin) in progressive multiple sclerosis: results of a pivotal phase III randomized double blind placebo controlled study (PL2.002). Neurology 2015; 84 (14 Suppl): PL2.002
  • 90 Deshmukh VA, Tardif V, Lyssiotis CA , et al. A regenerative approach to the treatment of multiple sclerosis. Nature 2013; 502 (7471) 327-332
  • 91 Najm FJ, Madhavan M, Zaremba A , et al. Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo. Nature 2015; 522 (7555) 216-220
  • 92 Way SW, Podojil JR, Clayton BL , et al. Pharmaceutical integrated stress response enhancement protects oligodendrocytes and provides a potential multiple sclerosis therapeutic. Nat Commun 2015; 6 article 6532
  • 93 Crawford DK, Mangiardi M, Song B , et al. Oestrogen receptor beta ligand: a novel treatment to enhance endogenous functional remyelination. Brain 2010; 133 (10) 2999-3016
  • 94 Magalon K, Zimmer C, Cayre M , et al. Olesoxime accelerates myelination and promotes repair in models of demyelination. Ann Neurol 2012; 71 (2) 213-226