Semin Neurol 2016; 36(02): 115-127
DOI: 10.1055/s-0036-1579739
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Immunology of Multiple Sclerosis

Mireia Sospedra
1   Section of Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich, Switzerland
,
Roland Martin
1   Section of Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich, Switzerland
› Author Affiliations
Further Information

Publication History

Publication Date:
26 April 2016 (online)

Abstract

Multiple sclerosis (MS) is considered a prototypic autoimmune disease of the central nervous system (CNS). A complex genetic background with the HLA-DR15 haplotype as the main genetic risk factor and over 100 mostly immune-related minor risk alleles as well as several environmental factors contribute to the etiology of MS. With respect to pathomechanisms, autoimmune inflammation in early MS is primarily mediated by adaptive immune responses and involves autoreactive T cells, B cells, and antibodies, while the later, chronic stages of MS are characterized by a compartmentalized immune response in the CNS with activated microglia and macrophages. A host of immune cells and mediators can contribute to the autoimmune process, but CNS-related factors such as localization of lesions, vulnerability of oligodendrocytes, neurons/axons, and secondary metabolic changes all play a role in the heterogeneous expression of the disease, including different pathologic lesion patterns, neuroimaging findings, disease courses, and severity and response to treatment.

 
  • References

  • 1 Orton SM, Herrera BM, Yee IM , et al; Canadian Collaborative Study Group. Sex ratio of multiple sclerosis in Canada: a longitudinal study. Lancet Neurol 2006; 5 (11) 932-936
  • 2 Compston A, Coles A. Multiple sclerosis. Lancet 2008; 372 (9648) 1502-1517
  • 3 Sawcer S, Hellenthal G, Pirinen M , et al; International Multiple Sclerosis Genetics Consortium; Wellcome Trust Case Control Consortium 2. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 2011; 476 (7359) 214-219
  • 4 Beecham AH, Patsopoulos NA, Xifara DK , et al; International Multiple Sclerosis Genetics Consortium (IMSGC); Wellcome Trust Case Control Consortium 2 (WTCCC2); International IBD Genetics Consortium (IIBDGC). Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet 2013; 45 (11) 1353-1360
  • 5 Ascherio A, Munger KL, Lünemann JD. The initiation and prevention of multiple sclerosis. Nat Rev Neurol 2012; 8 (11) 602-612
  • 6 Coles AJ, Wing MG, Molyneux P , et al. Monoclonal antibody treatment exposes three mechanisms underlying the clinical course of multiple sclerosis. Ann Neurol 1999; 46 (3) 296-304
  • 7 Molyneux PD, Kappos L, Polman C , et al. The effect of interferon beta-1b treatment on MRI measures of cerebral atrophy in secondary progressive multiple sclerosis. European Study Group on Interferon beta-1b in secondary progressive multiple sclerosis. Brain 2000; 123 (Pt 11): 2256-2263
  • 8 Filippi M, Rovaris M, Rice GP , et al. The effect of cladribine on T(1) ‘black hole’ changes in progressive MS. J Neurol Sci 2000; 176 (1) 42-44
  • 9 Feinstein A, Freeman J, Lo AC. Treatment of progressive multiple sclerosis: what works, what does not, and what is needed. Lancet Neurol 2015; 14 (2) 194-207
  • 10 Bielekova B, Kadom N, Fisher E , et al. MRI as a marker for disease heterogeneity in multiple sclerosis. Neurology 2005; 65 (7) 1071-1076
  • 11 Filippi M, Rocca MA. MRI evidence for multiple sclerosis as a diffuse disease of the central nervous system. J Neurol 2005; 252 (Suppl. 05) v16-v24
  • 12 Anderson VM, Fox NC, Miller DH. Magnetic resonance imaging measures of brain atrophy in multiple sclerosis. J Magn Reson Imaging 2006; 23 (5) 605-618
  • 13 Zivadinov R, Cox JL. Neuroimaging in multiple sclerosis. Int Rev Neurobiol 2007; 79: 449-474
  • 14 Frischer JM, Bramow S, Dal-Bianco A , et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 2009; 132 (Pt 5): 1175-1189
  • 15 Bjartmar C, Kinkel RP, Kidd G, Rudick RA, Trapp BD. Axonal loss in normal-appearing white matter in a patient with acute MS. Neurology 2001; 57 (7) 1248-1252
  • 16 DeLuca GC, Williams K, Evangelou N, Ebers GC, Esiri MM. The contribution of demyelination to axonal loss in multiple sclerosis. Brain 2006; 129 (Pt 6): 1507-1516
  • 17 Kornek B, Storch MK, Weissert R , et al. Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am J Pathol 2000; 157 (1) 267-276
  • 18 Peterson JW, Bö L, Mörk S, Chang A, Trapp BD. Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol 2001; 50 (3) 389-400
  • 19 Bø L, Vedeler CA, Nyland H, Trapp BD, Mørk SJ. Intracortical multiple sclerosis lesions are not associated with increased lymphocyte infiltration. Mult Scler 2003; 9 (4) 323-331
  • 20 Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mörk S, Bö L. Axonal transection in the lesions of multiple sclerosis. N Engl J Med 1998; 338 (5) 278-285
  • 21 Chard DT, Griffin CM, Parker GJ, Kapoor R, Thompson AJ, Miller DH. Brain atrophy in clinically early relapsing-remitting multiple sclerosis. Brain 2002; 125 (Pt 2): 327-337
  • 22 Miller DH, Barkhof F, Frank JA, Parker GJ, Thompson AJ. Measurement of atrophy in multiple sclerosis: pathological basis, methodological aspects and clinical relevance. Brain 2002; 125 (Pt 8): 1676-1695
  • 23 Young KL, Brandt AU, Petzold A , et al. Loss of retinal nerve fibre layer axons indicates white but not grey matter damage in early multiple sclerosis. Eur J Neurol 2013; 20 (5) 803-811
  • 24 Kuhle J, Leppert D, Petzold A , et al. Neurofilament heavy chain in CSF correlates with relapses and disability in multiple sclerosis. Neurology 2011; 76 (14) 1206-1213
  • 25 Lucchinetti C, Brück W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 2000; 47 (6) 707-717
  • 26 Metz I, Weigand SD, Popescu BF , et al. Pathologic heterogeneity persists in early active multiple sclerosis lesions. Ann Neurol 2014; 75 (5) 728-738
  • 27 Barnett MH, Prineas JW. Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 2004; 55 (4) 458-468
  • 28 Breij EC, Brink BP, Veerhuis R , et al. Homogeneity of active demyelinating lesions in established multiple sclerosis. Ann Neurol 2008; 63 (1) 16-25
  • 29 Mahad DJ, Trebst C, Kivisäkk P , et al. Expression of chemokine receptors CCR1 and CCR5 reflects differential activation of mononuclear phagocytes in pattern II and pattern III multiple sclerosis lesions. J Neuropathol Exp Neurol 2004; 63 (3) 262-273
  • 30 Keegan M, König F, McClelland R , et al. Relation between humoral pathological changes in multiple sclerosis and response to therapeutic plasma exchange. Lancet 2005; 366 (9485) 579-582
  • 31 Quintana FJ, Farez MF, Viglietta V , et al. Antigen microarrays identify unique serum autoantibody signatures in clinical and pathologic subtypes of multiple sclerosis. Proc Natl Acad Sci U S A 2008; 105 (48) 18889-18894
  • 32 Planas R, Metz I, Ortiz Y , et al. Central role of Th2/Tc2 lymphocytes in pattern II multiple sclerosis lesions. Ann Clin Transl Neurol 2015; 2 (9) 875-893
  • 33 Mokhtarian F, McFarlin DE, Raine CS. Adoptive transfer of myelin basic protein-sensitized T cells produces chronic relapsing demyelinating disease in mice. Nature 1984; 309 (5966) 356-358
  • 34 Zamvil SS, Mitchell DJ, Moore AC, Kitamura K, Steinman L, Rothbard JB. T-cell epitope of the autoantigen myelin basic protein that induces encephalomyelitis. Nature 1986; 324 (6094) 258-260
  • 35 Tuohy VK, Sobel RA, Lees MB. Susceptibility to PLP-induced EAE is regulated by non-H-2 genes. Ann N Y Acad Sci 1988; 540: 709-711
  • 36 Mendel I, Kerlero de Rosbo N, Ben-Nun A. A myelin oligodendrocyte glycoprotein peptide induces typical chronic experimental autoimmune encephalomyelitis in H-2b mice: fine specificity and T cell receptor V beta expression of encephalitogenic T cells. Eur J Immunol 1995; 25 (7) 1951-1959
  • 37 Kojima K, Berger T, Lassmann H , et al. Experimental autoimmune panencephalitis and uveoretinitis transferred to the Lewis rat by T lymphocytes specific for the S100 beta molecule, a calcium binding protein of astroglia. J Exp Med 1994; 180 (3) 817-829
  • 38 Martin R, McFarland HF, McFarlin DE. Immunological aspects of demyelinating diseases. Annu Rev Immunol 1992; 10: 153-187
  • 39 Ben-Nun A, Wekerle H, Cohen IR. The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis. Eur J Immunol 1981; 11 (3) 195-199
  • 40 Pettinelli CB, McFarlin DE. Adoptive transfer of experimental allergic encephalomyelitis in SJL/J mice after in vitro activation of lymph node cells by myelin basic protein: requirement for Lyt 1+ 2- T lymphocytes. J Immunol 1981; 127 (4) 1420-1423
  • 41 Madsen LS, Andersson EC, Jansson L , et al. A humanized model for multiple sclerosis using HLA-DR2 and a human T-cell receptor. Nat Genet 1999; 23 (3) 343-347
  • 42 Quandt JA, Huh J, Baig M , et al. Myelin basic protein-specific TCR/HLA-DRB5*01:01 transgenic mice support the etiologic role of DRB5*01:01 in multiple sclerosis. J Immunol 2012; 189 (6) 2897-2908
  • 43 Quandt JA, Baig M, Yao K , et al. Unique clinical and pathological features in HLA-DRB1*0401-restricted MBP 111-129-specific humanized TCR transgenic mice. J Exp Med 2004; 200 (2) 223-234
  • 44 Hafler DA, Compston A, Sawcer S , et al; International Multiple Sclerosis Genetics Consortium. Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med 2007; 357 (9) 851-862
  • 45 Berer K, Mues M, Koutrolos M , et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 2011; 479 (7374) 538-541
  • 46 Odoardi F, Sie C, Streyl K , et al. T cells become licensed in the lung to enter the central nervous system. Nature 2012; 488 (7413) 675-679
  • 47 Wekerle H, Berer K, Krishnamoorthy G. Remote control-triggering of brain autoimmune disease in the gut. Curr Opin Immunol 2013; 25 (6) 683-689
  • 48 Hedström AK, Bäärnhielm M, Olsson T, Alfredsson L. Tobacco smoking, but not Swedish snuff use, increases the risk of multiple sclerosis. Neurology 2009; 73 (9) 696-701
  • 49 Kleinewietfeld M, Manzel A, Titze J , et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 2013; 496 (7446) 518-522
  • 50 Ransohoff RM, Engelhardt B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 2012; 12 (9) 623-635
  • 51 Fujinami RS, Oldstone MB. Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science 1985; 230 (4729) 1043-1045
  • 52 Gran B, Hemmer B, Vergelli M, McFarland HF, Martin R. Molecular mimicry and multiple sclerosis: degenerate T-cell recognition and the induction of autoimmunity. Ann Neurol 1999; 45 (5) 559-567
  • 53 Wucherpfennig KW, Strominger JL. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 1995; 80 (5) 695-705
  • 54 Hemmer B, Fleckenstein BT, Vergelli M , et al. Identification of high potency microbial and self ligands for a human autoreactive class II-restricted T cell clone. J Exp Med 1997; 185 (9) 1651-1659
  • 55 Hemmer B, Gran B, Zhao Y , et al. Identification of candidate T-cell epitopes and molecular mimics in chronic Lyme disease. Nat Med 1999; 5 (12) 1375-1382
  • 56 Lang HL, Jacobsen H, Ikemizu S , et al. A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat Immunol 2002; 3 (10) 940-943
  • 57 Sospedra M, Muraro PA, Stefanová I , et al. Redundancy in antigen-presenting function of the HLA-DR and -DQ molecules in the multiple sclerosis-associated HLA-DR2 haplotype. J Immunol 2006; 176 (3) 1951-1961
  • 58 Yousef S, Planas R, Chakroun K , et al. TCR bias and HLA cross-restriction are strategies of human brain-infiltrating JC virus-specific CD4+ T cells during viral infection. J Immunol 2012; 189 (7) 3618-3630
  • 59 Sibley WA, Bamford CR, Clark K. Clinical viral infections and multiple sclerosis. Lancet 1985; 1 (8441) 1313-1315
  • 60 Sospedra M, Martin R. Immunology of multiple sclerosis. Annu Rev Immunol 2005; 23: 683-747
  • 61 Cao Y, Goods BA, Raddassi K , et al. Functional inflammatory profiles distinguish myelin-reactive T cells from patients with multiple sclerosis. Sci Transl Med 2015; 7 (287) 287ra74
  • 62 Markovic-Plese S, Cortese I, Wandinger KP, McFarland HF, Martin R. CD4+CD28- costimulation-independent T cells in multiple sclerosis. J Clin Invest 2001; 108 (8) 1185-1194
  • 63 Lassmann H, Ransohoff RM. The CD4-Th1 model for multiple sclerosis: a critical [correction of crucial] re-appraisal. Trends Immunol 2004; 25 (3) 132-137
  • 64 Trotter JL, Damico CA, Cross AH , et al. HPRT mutant T-cell lines from multiple sclerosis patients recognize myelin proteolipid protein peptides. J Neuroimmunol 1997; 75 (1–2) 95-103
  • 65 Bielekova B, Sung MH, Kadom N, Simon R, McFarland H, Martin R. Expansion and functional relevance of high-avidity myelin-specific CD4+ T cells in multiple sclerosis. J Immunol 2004; 172 (6) 3893-3904
  • 66 Bielekova B, Goodwin B, Richert N , et al. Encephalitogenic potential of the myelin basic protein peptide (amino acids 83-99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat Med 2000; 6 (10) 1167-1175
  • 67 Muraro PA, Wandinger KP, Bielekova B , et al. Molecular tracking of antigen-specific T cell clones in neurological immune-mediated disorders. Brain 2003; 126 (Pt 1) 20-31
  • 68 Link J, Lorentzen AR, Kockum I , et al. Two HLA class I genes independently associated with multiple sclerosis. J Neuroimmunol 2010; 226 (1–2) 172-176
  • 69 Healy BC, Liguori M, Tran D , et al. HLA B*44: protective effects in MS susceptibility and MRI outcome measures. Neurology 2010; 75 (7) 634-640
  • 70 Friese MA, Jakobsen KB, Friis L , et al. Opposing effects of HLA class I molecules in tuning autoreactive CD8+ T cells in multiple sclerosis. Nat Med 2008; 14 (11) 1227-1235
  • 71 MacNamara KC, Bender SJ, Chua MM, Watson R, Weiss SR. Priming of CD8+ T cells during central nervous system infection with a murine coronavirus is strain dependent. J Virol 2008; 82 (13) 6150-6160
  • 72 Hauser SL, Bhan AK, Gilles F, Kemp M, Kerr C, Weiner HL. Immunohistochemical analysis of the cellular infiltrate in multiple sclerosis lesions. Ann Neurol 1986; 19 (6) 578-587
  • 73 Babbe H, Roers A, Waisman A , et al. Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med 2000; 192 (3) 393-404
  • 74 Skulina C, Schmidt S, Dornmair K , et al. Multiple sclerosis: brain-infiltrating CD8+ T cells persist as clonal expansions in the cerebrospinal fluid and blood. Proc Natl Acad Sci U S A 2004; 101 (8) 2428-2433
  • 75 Junker A, Ivanidze J, Malotka J , et al. Multiple sclerosis: T-cell receptor expression in distinct brain regions. Brain 2007; 130 (Pt 11): 2789-2799
  • 76 Neumann H, Cavalié A, Jenne DE, Wekerle H. Induction of MHC class I genes in neurons. Science 1995; 269 (5223) 549-552
  • 77 Yshii L, Gebauer C, Bernard-Valnet R, Liblau R. Neurons and T cells: Understanding this interaction for inflammatory neurological diseases. Eur J Immunol 2015; 45 (10) 2712-2720
  • 78 Olsson T, Wallström E. IFN-secreting cells. Neurology 1996; 47 (3) 854-855
  • 79 Harrington LE, Hatton RD, Mangan PR , et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005; 6 (11) 1123-1132
  • 80 Park H, Li Z, Yang XO , et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005; 6 (11) 1133-1141
  • 81 Annunziato F, Cosmi L, Liotta F, Maggi E, Romagnani S. Defining the human T helper 17 cell phenotype. Trends Immunol 2012; 33 (10) 505-512
  • 82 Codarri L, Gyülvészi G, Tosevski V , et al. RORγt drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat Immunol 2011; 12 (6) 560-567
  • 83 Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 cells. Annu Rev Immunol 2009; 27: 485-517
  • 84 Steinman L. A rush to judgment on Th17. J Exp Med 2008; 205 (7) 1517-1522
  • 85 Kebir H, Kreymborg K, Ifergan I , et al. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med 2007; 13 (10) 1173-1175
  • 86 Tzartos JS, Friese MA, Craner MJ , et al. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am J Pathol 2008; 172 (1) 146-155
  • 87 Lock C, Hermans G, Pedotti R , et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 2002; 8 (5) 500-508
  • 88 Becattini S, Latorre D, Mele F , et al. T cell immunity. Functional heterogeneity of human memory CD4+ T cell clones primed by pathogens or vaccines. Science 2015; 347 (6220) 400-406
  • 89 Australia and New Zealand Multiple Sclerosis Genetics Consortium (ANZgene). Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20. Nat Genet 2009; 41 (7) 824-828
  • 90 De Jager PL, Jia X, Wang J , et al; International MS Genetics Consortium. Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci. Nat Genet 2009; 41 (7) 776-782
  • 91 Burton PR, Clayton DG, Cardon LR , et al; Wellcome Trust Case Control Consortium; Australo-Anglo-American Spondylitis Consortium (TASC); Biologics in RA Genetics and Genomics Study Syndicate (BRAGGS) Steering Committee; Breast Cancer Susceptibility Collaboration (UK). Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet 2007; 39 (11) 1329-1337
  • 92 Gregory SG, Schmidt S, Seth P , et al; Multiple Sclerosis Genetics Group. Interleukin 7 receptor alpha chain (IL7R) shows allelic and functional association with multiple sclerosis. Nat Genet 2007; 39 (9) 1083-1091
  • 93 McKay FC, Swain LI, Schibeci SD , et al. Haplotypes of the interleukin 7 receptor alpha gene are correlated with altered expression in whole blood cells in multiple sclerosis. Genes Immun 2008; 9 (1) 1-6
  • 94 Jäger J, Schulze C, Rösner S, Martin R. IL7RA haplotype-associated alterations in cellular immune function and gene expression patterns in multiple sclerosis. Genes Immun 2013; 14 (7) 453-461
  • 95 Yang L, Anderson DE, Kuchroo J, Hafler DA. Lack of TIM-3 immunoregulation in multiple sclerosis. J Immunol 2008; 180 (7) 4409-4414
  • 96 Koguchi K, Anderson DE, Yang L, O'Connor KC, Kuchroo VK, Hafler DA. Dysregulated T cell expression of TIM3 in multiple sclerosis. J Exp Med 2006; 203 (6) 1413-1418
  • 97 Stürner KH, Borgmeyer U, Schulze C, Pless O, Martin R. A multiple sclerosis-associated variant of CBLB links genetic risk with type I IFN function. J Immunol 2014; 193 (9) 4439-4447
  • 98 Hoppmann N, Graetz C, Paterka M , et al. New candidates for CD4 T cell pathogenicity in experimental neuroinflammation and multiple sclerosis. Brain 2015; 138 (Pt 4): 902-917
  • 99 Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 2004; 199 (7) 971-979
  • 100 Haas J, Hug A, Viehöver A , et al. Reduced suppressive effect of CD4+CD25high regulatory T cells on the T cell immune response against myelin oligodendrocyte glycoprotein in patients with multiple sclerosis. Eur J Immunol 2005; 35 (11) 3343-3352
  • 101 Dominguez-Villar M, Baecher-Allan CM, Hafler DA. Identification of T helper type 1-like, Foxp3+ regulatory T cells in human autoimmune disease. Nat Med 2011; 17 (6) 673-675
  • 102 Baecher-Allan CM, Costantino CM, Cvetanovich GL , et al. CD2 costimulation reveals defective activity by human CD4+CD25(hi) regulatory cells in patients with multiple sclerosis. J Immunol 2011; 186 (6) 3317-3326
  • 103 Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavin MA, Rudensky AY. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 2007; 445 (7130) 936-940
  • 104 Marson A, Kretschmer K, Frampton GM , et al. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 2007; 445 (7130) 931-935
  • 105 Housley WJ, Fernandez SD, Vera K , et al. Genetic variants associated with autoimmunity drive NFκB signaling and responses to inflammatory stimuli. Sci Transl Med 2015; 7 (291) 291ra93
  • 106 Rumble JM, Huber AK, Krishnamoorthy G , et al. Neutrophil-related factors as biomarkers in EAE and MS. J Exp Med 2015; 212 (1) 23-35
  • 107 Naegele M, Tillack K, Reinhardt S, Schippling S, Martin R, Sospedra M. Neutrophils in multiple sclerosis are characterized by a primed phenotype. J Neuroimmunol 2012; 242 (1–2) 60-71
  • 108 Openshaw H, Stuve O, Antel JP , et al. Multiple sclerosis flares associated with recombinant granulocyte colony-stimulating factor. Neurology 2000; 54 (11) 2147-2150
  • 109 Tillack K, Breiden P, Martin R, Sospedra M. T lymphocyte priming by neutrophil extracellular traps links innate and adaptive immune responses. J Immunol 2012; 188 (7) 3150-3159
  • 110 Illés Z, Kondo T, Newcombe J, Oka N, Tabira T, Yamamura T. Differential expression of NK T cell V alpha 24J alpha Q invariant TCR chain in the lesions of multiple sclerosis and chronic inflammatory demyelinating polyneuropathy. J Immunol 2000; 164 (8) 4375-4381
  • 111 Gately CM, Podbielska M, Counihan T , et al. Invariant natural killer T-cell anergy to endogenous myelin acetyl-glycolipids in multiple sclerosis. J Neuroimmunol 2013; 259 (1–2) 1-7
  • 112 Annibali V, Ristori G, Angelini DF , et al. CD161(high)CD8+T cells bear pathogenetic potential in multiple sclerosis. Brain 2011; 134 (Pt 2): 542-554
  • 113 Abrahamsson SV, Angelini DF, Dubinsky AN , et al. Non-myeloablative autologous haematopoietic stem cell transplantation expands regulatory cells and depletes IL-17 producing mucosal-associated invariant T cells in multiple sclerosis. Brain 2013; 136 (Pt 9): 2888-2903
  • 114 Willing A, Leach OA, Ufer F , et al. CD8+ MAIT cells infiltrate into the CNS and alterations in their blood frequencies correlate with IL-18 serum levels in multiple sclerosis. Eur J Immunol 2014; 44 (10) 3119-3128
  • 115 Held K, Beltrán E, Moser M, Hohlfeld R, Dornmair K. T-cell receptor repertoire of human peripheral CD161hiTRAV1-2+ MAIT cells revealed by next generation sequencing and single cell analysis. Hum Immunol 2015; 76 (9) 607-614
  • 116 Kastrukoff LF, Morgan NG, Zecchini D , et al. A role for natural killer cells in the immunopathogenesis of multiple sclerosis. J Neuroimmunol 1998; 86 (2) 123-133
  • 117 Bielekova B, Richert N, Howard T , et al. Humanized anti-CD25 (daclizumab) inhibits disease activity in multiple sclerosis patients failing to respond to interferon beta. Proc Natl Acad Sci U S A 2004; 101 (23) 8705-8708
  • 118 Bielekova B, Catalfamo M, Reichert-Scrivner S , et al. Regulatory CD56(bright) natural killer cells mediate immunomodulatory effects of IL-2Ralpha-targeted therapy (daclizumab) in multiple sclerosis. Proc Natl Acad Sci U S A 2006; 103 (15) 5941-5946
  • 119 Kabat EA, Moore DH, Landow H. An electrophoretic study of the protein components in cerebrospinal fluid and their relationship to the serum proteins. J Clin Invest 1942; 21 (5) 571-577
  • 120 Berger T, Rubner P, Schautzer F , et al. Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event. N Engl J Med 2003; 349 (2) 139-145
  • 121 Pröbstel AK, Dornmair K, Bittner R , et al. Antibodies to MOG are transient in childhood acute disseminated encephalomyelitis. Neurology 2011; 77 (6) 580-588
  • 122 Rostasy K, Mader S, Schanda K , et al. Anti-myelin oligodendrocyte glycoprotein antibodies in pediatric patients with optic neuritis. Arch Neurol 2012; 69 (6) 752-756
  • 123 Nakajima H, Motomura M, Tanaka K , et al. Antibodies to myelin oligodendrocyte glycoprotein in idiopathic optic neuritis. BMJ Open 2015; 5 (4) e007766
  • 124 Krumbholz M, Derfuss T, Hohlfeld R, Meinl E. B cells and antibodies in multiple sclerosis pathogenesis and therapy. Nat Rev Neurol 2012; 8 (11) 613-623
  • 125 Srivastava R, Aslam M, Kalluri SR , et al. Potassium channel KIR4.1 as an immune target in multiple sclerosis. N Engl J Med 2012; 367 (2) 115-123
  • 126 Mathey EK, Derfuss T, Storch MK , et al. Neurofascin as a novel target for autoantibody-mediated axonal injury. J Exp Med 2007; 204 (10) 2363-2372
  • 127 Derfuss T, Parikh K, Velhin S , et al. Contactin-2/TAG-1-directed autoimmunity is identified in multiple sclerosis patients and mediates gray matter pathology in animals. Proc Natl Acad Sci U S A 2009; 106 (20) 8302-8307
  • 128 Elliott C, Lindner M, Arthur A , et al. Functional identification of pathogenic autoantibody responses in patients with multiple sclerosis. Brain 2012; 135 (Pt 6): 1819-1833
  • 129 Stefferl A, Brehm U, Linington C. The myelin oligodendrocyte glycoprotein (MOG): a model for antibody-mediated demyelination in experimental autoimmune encephalomyelitis and multiple sclerosis. J Neural Transm Suppl 2000; 58 (58) 123-133
  • 130 Villar LM, Sádaba MC, Roldán E , et al. Intrathecal synthesis of oligoclonal IgM against myelin lipids predicts an aggressive disease course in MS. J Clin Invest 2005; 115 (1) 187-194
  • 131 Magliozzi R, Howell O, Vora A , et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 2007; 130 (Pt 4): 1089-1104
  • 132 Salvetti M, Giovannoni G, Aloisi F. Epstein-Barr virus and multiple sclerosis. Curr Opin Neurol 2009; 22 (3) 201-206
  • 133 Serafini B, Rosicarelli B, Franciotta D , et al. Dysregulated Epstein-Barr virus infection in the multiple sclerosis brain. J Exp Med 2007; 204 (12) 2899-2912
  • 134 Serafini B, Muzio L, Rosicarelli B, Aloisi F. Radioactive in situ hybridization for Epstein-Barr virus-encoded small RNA supports presence of Epstein-Barr virus in the multiple sclerosis brain. Brain 2013; 136 (Pt 7): e233
  • 135 Lassmann H, Niedobitek G, Aloisi F, Middeldorp JM ; NeuroproMiSe EBV Working Group. Epstein-Barr virus in the multiple sclerosis brain: a controversial issue—report on a focused workshop held in the Centre for Brain Research of the Medical University of Vienna, Austria. Brain 2011; 134 (Pt 9): 2772-2786
  • 136 Howell OW, Reeves CA, Nicholas R , et al. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain 2011; 134 (Pt 9): 2755-2771
  • 137 Gardner C, Magliozzi R, Durrenberger PF, Howell OW, Rundle J, Reynolds R. Cortical grey matter demyelination can be induced by elevated pro-inflammatory cytokines in the subarachnoid space of MOG-immunized rats. Brain 2013; 136 (Pt 12): 3596-3608
  • 138 Stern JN, Yaari G, Vander Heiden JA , et al. B cells populating the multiple sclerosis brain mature in the draining cervical lymph nodes. Sci Transl Med 2014; 6 (248) 248ra107
  • 139 von Büdingen HC, Kuo TC, Sirota M , et al. B cell exchange across the blood-brain barrier in multiple sclerosis. J Clin Invest 2012; 122 (12) 4533-4543
  • 140 Palanichamy A, Apeltsin L, Kuo TC , et al. Immunoglobulin class-switched B cells form an active immune axis between CNS and periphery in multiple sclerosis. Sci Transl Med 2014; 6 (248) 248ra106
  • 141 Hauser SL, Waubant E, Arnold DL , et al; HERMES Trial Group. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 2008; 358 (7) 676-688
  • 142 Hauser SL, Comi GC, Hartung HP , et al. Efficacy and safety of ocrelizumab in relapsing multiple sclerosis–results of the interferon-beta-1a-controlled, double-blind, phase III OPERA I and II studies. ECTRIMS Online Library 2015; 116634
  • 143 Lutterotti A, Martin R. Getting specific: monoclonal antibodies in multiple sclerosis. Lancet Neurol 2008; 7 (6) 538-547
  • 144 Li R, Rezk A, Miyazaki Y , et al; Canadian B cells in MS Team. Proinflammatory GM-CSF-producing B cells in multiple sclerosis and B cell depletion therapy. Sci Transl Med 2015; 7 (310) 310ra166
  • 145 Dang VD, Hilgenberg E, Ries S, Shen P, Fillatreau S. From the regulatory functions of B cells to the identification of cytokine-producing plasma cell subsets. Curr Opin Immunol 2014; 28: 77-83
  • 146 Engelhardt B, Ransohoff RM. Capture, crawl, cross: the T cell code to breach the blood-brain barriers. Trends Immunol 2012; 33 (12) 579-589
  • 147 Kivisäkk P, Mahad DJ, Callahan MK , et al. Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc Natl Acad Sci U S A 2003; 100 (14) 8389-8394
  • 148 Kivisäkk P, Imitola J, Rasmussen S , et al. Localizing central nervous system immune surveillance: meningeal antigen-presenting cells activate T cells during experimental autoimmune encephalomyelitis. Ann Neurol 2009; 65 (4) 457-469
  • 149 Greter M, Heppner FL, Lemos MP , et al. Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat Med 2005; 11 (3) 328-334
  • 150 Heppner FL, Greter M, Marino D , et al. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med 2005; 11 (2) 146-152
  • 151 Brown DA, Sawchenko PE. Time course and distribution of inflammatory and neurodegenerative events suggest structural bases for the pathogenesis of experimental autoimmune encephalomyelitis. J Comp Neurol 2007; 502 (2) 236-260
  • 152 Yednock TA, Cannon C, Fritz LC, Sanchez-Madrid F, Steinman L, Karin N. Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature 1992; 356 (6364) 63-66
  • 153 Engelhardt B, Briskin MJ. Therapeutic targeting of alpha 4-integrins in chronic inflammatory diseases: tipping the scales of risk towards benefit?. Eur J Immunol 2005; 35 (8) 2268-2273
  • 154 Khatri BO, Man S, Giovannoni G , et al. Effect of plasma exchange in accelerating natalizumab clearance and restoring leukocyte function. Neurology 2009; 72 (5) 402-409
  • 155 Man S, Tucky B, Bagheri N, Li X, Kochar R, Ransohoff RM. Alpha4 integrin/FN-CS1 mediated leukocyte adhesion to brain microvascular endothelial cells under flow conditions. J Neuroimmunol 2009; 210 (1–2) 92-99
  • 156 Coisne C, Mao W, Engelhardt B. Cutting edge: natalizumab blocks adhesion but not initial contact of human T cells to the blood-brain barrier in vivo in an animal model of multiple sclerosis. J Immunol 2009; 182 (10) 5909-5913
  • 157 Ransohoff RM. Chemokines and chemokine receptors: standing at the crossroads of immunobiology and neurobiology. Immunity 2009; 31 (5) 711-721
  • 158 Reboldi A, Coisne C, Baumjohann D , et al. C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol 2009; 10 (5) 514-523
  • 159 Rothhammer V, Heink S, Petermann F , et al. Th17 lymphocytes traffic to the central nervous system independently of α4 integrin expression during EAE. J Exp Med 2011; 208 (12) 2465-2476
  • 160 Kawakami N, Lassmann S, Li Z , et al. The activation status of neuroantigen-specific T cells in the target organ determines the clinical outcome of autoimmune encephalomyelitis. J Exp Med 2004; 199 (2) 185-197
  • 161 Bartholomäus I, Kawakami N, Odoardi F , et al. Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 2009; 462 (7269) 94-98
  • 162 Schreiber TH, Shinder V, Cain DW, Alon R, Sackstein R. Shear flow-dependent integration of apical and subendothelial chemokines in T-cell transmigration: implications for locomotion and the multistep paradigm. Blood 2007; 109 (4) 1381-1386
  • 163 Kim JV, Kang SS, Dustin ML, McGavern DB. Myelomonocytic cell recruitment causes fatal CNS vascular injury during acute viral meningitis. Nature 2009; 457 (7226) 191-195
  • 164 Ferguson B, Matyszak MK, Esiri MM, Perry VH. Axonal damage in acute multiple sclerosis lesions. Brain 1997; 120 (Pt 3): 393-399
  • 165 Vergelli M, Le H, van Noort JM, Dhib-Jalbut S, McFarland H, Martin R. A novel population of CD4+CD56+ myelin-reactive T cells lyses target cells expressing CD56/neural cell adhesion molecule. J Immunol 1996; 157 (2) 679-688
  • 166 Vergelli M, Hemmer B, Muraro PA , et al. Human autoreactive CD4+ T cell clones use perforin- or Fas/Fas ligand-mediated pathways for target cell lysis. J Immunol 1997; 158 (6) 2756-2761
  • 167 Antel JP, McCrea E, Ladiwala U, Qin YF, Becher B. Non-MHC-restricted cell-mediated lysis of human oligodendrocytes in vitro: relation with CD56 expression. J Immunol 1998; 160 (4) 1606-1611
  • 168 Zaguia F, Saikali P, Ludwin S , et al. Cytotoxic NKG2C+ CD4 T cells target oligodendrocytes in multiple sclerosis. J Immunol 2013; 190 (6) 2510-2518
  • 169 Aktas O, Smorodchenko A, Brocke S , et al. Neuronal damage in autoimmune neuroinflammation mediated by the death ligand TRAIL. Neuron 2005; 46 (3) 421-432
  • 170 Jurewicz A, Matysiak M, Andrzejak S, Selmaj K. TRAIL-induced death of human adult oligodendrocytes is mediated by JNK pathway. Glia 2006; 53 (2) 158-166
  • 171 Suidan HS, Bouvier J, Schaerer E, Stone SR, Monard D, Tschopp J. Granzyme A released upon stimulation of cytotoxic T lymphocytes activates the thrombin receptor on neuronal cells and astrocytes. Proc Natl Acad Sci U S A 1994; 91 (17) 8112-8116
  • 172 Selmaj KW, Raine CS. Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro. Ann Neurol 1988; 23 (4) 339-346
  • 173 Almeida-Leite CM, Galvão LM, Afonso LC, Cunha FQ, Arantes RM. Interferon-gamma induced nitric oxide mediates in vitro neuronal damage by Trypanosoma cruzi-infected macrophages. Neurobiol Dis 2007; 25 (1) 170-178
  • 174 Wong G, Goldshmit Y, Turnley AM. Interferon-gamma but not TNF alpha promotes neuronal differentiation and neurite outgrowth of murine adult neural stem cells. Exp Neurol 2004; 187 (1) 171-177
  • 175 Lees JR, Golumbek PT, Sim J, Dorsey D, Russell JH. Regional CNS responses to IFN-gamma determine lesion localization patterns during EAE pathogenesis. J Exp Med 2008; 205 (11) 2633-2642
  • 176 Kroenke MA, Carlson TJ, Andjelkovic AV, Segal BM. IL-12- and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition. J Exp Med 2008; 205 (7) 1535-1541
  • 177 Calabrese M, Magliozzi R, Ciccarelli O, Geurts JJ, Reynolds R, Martin R. Exploring the origins of grey matter damage in multiple sclerosis. Nat Rev Neurosci 2015; 16 (3) 147-158
  • 178 Lucchinetti CF, Popescu BF, Bunyan RF , et al. Inflammatory cortical demyelination in early multiple sclerosis. N Engl J Med 2011; 365 (23) 2188-2197
  • 179 Zeis T, Graumann U, Reynolds R, Schaeren-Wiemers N. Normal-appearing white matter in multiple sclerosis is in a subtle balance between inflammation and neuroprotection. Brain 2008; 131 (Pt 1): 288-303
  • 180 Graumann U, Reynolds R, Steck AJ, Schaeren-Wiemers N. Molecular changes in normal appearing white matter in multiple sclerosis are characteristic of neuroprotective mechanisms against hypoxic insult. Brain Pathol 2003; 13 (4) 554-573
  • 181 Brück W, Stadelmann C. The spectrum of multiple sclerosis: new lessons from pathology. Curr Opin Neurol 2005; 18 (3) 221-224
  • 182 Lassmann H. Pathology and disease mechanisms in different stages of multiple sclerosis. J Neurol Sci 2013; 333 (1–2) 1-4
  • 183 Mahad DH, Trapp BD, Lassmann H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol 2015; 14 (2) 183-193
  • 184 Astier AL, Meiffren G, Freeman S, Hafler DA. Alterations in CD46-mediated Tr1 regulatory T cells in patients with multiple sclerosis. J Clin Invest 2006; 116 (12) 3252-3257
  • 185 Venken K, Hellings N, Hensen K , et al. Secondary progressive in contrast to relapsing-remitting multiple sclerosis patients show a normal CD4+CD25+ regulatory T-cell function and FOXP3 expression. J Neurosci Res 2006; 83 (8) 1432-1446
  • 186 Venken K, Hellings N, Broekmans T, Hensen K, Rummens JL, Stinissen P. Natural naive CD4+CD25+CD127low regulatory T cell (Treg) development and function are disturbed in multiple sclerosis patients: recovery of memory Treg homeostasis during disease progression. J Immunol 2008; 180 (9) 6411-6420
  • 187 McKay FC, Swain LI, Schibeci SD , et al. CD127 immunophenotyping suggests altered CD4+ T cell regulation in primary progressive multiple sclerosis. J Autoimmun 2008; 31 (1) 52-58
  • 188 Nyirenda MH, Morandi E, Vinkemeier U , et al. TLR2 stimulation regulates the balance between regulatory T cell and Th17 function: a novel mechanism of reduced regulatory T cell function in multiple sclerosis. J Immunol 2015; 194 (12) 5761-5774
  • 189 Farez MF, Mascanfroni ID, Méndez-Huergo SP , et al. Melatonin contributes to the seasonality of multiple sclerosis relapses. Cell 2015; 162 (6) 1338-1352
  • 190 Kappos L, Wiendl H, Selmaj K , et al. Daclizumab HYP versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med 2015; 373 (15) 1418-1428
  • 191 Bielekova B, Howard T, Packer AN , et al. Effect of anti-CD25 antibody daclizumab in the inhibition of inflammation and stabilization of disease progression in multiple sclerosis. Arch Neurol 2009; 66 (4) 483-489
  • 192 Linker R, Gold R, Luhder F. Function of neurotrophic factors beyond the nervous system: inflammation and autoimmune demyelination. Crit Rev Immunol 2009; 29 (1) 43-68