Semin Thromb Hemost 2016; 42(03): 268-281
DOI: 10.1055/s-0035-1570082
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Platelet Function Determined by Flow Cytometry: New Perspectives?

Sofia Ramström
1   Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
,
Anna L. Södergren
1   Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
,
Nahreen Tynngård
2   Department of Clinical Immunology and Transfusion Medicine and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
3   Department of Clinical Chemistry and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
,
Tomas L. Lindahl
3   Department of Clinical Chemistry and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
› Author Affiliations
Further Information

Publication History

Publication Date:
17 February 2016 (online)

Abstract

Flow cytometry enables studies of several different aspects of platelet function in response to a variety of platelet agonists. This can be done using only a small volume of whole blood, and also in blood with low platelet counts. These properties, together with the increasing number of flow cytometers available in hospitals worldwide, make flow cytometry an interesting option for laboratories interested in studies of platelet function in different clinical settings. This review focuses on practical issues regarding the use of flow cytometry for platelet function testing. It provides an overview of available activation markers, platelet agonists, and experimental setup issues. The review summarizes previous experience and factors important to consider to perform high-quality platelet function testing by flow cytometry. It also discusses its current use and possibilities and challenges for future use of flow cytometry in clinical settings.

 
  • References

  • 1 Quiroga T, Mezzano D. Is my patient a bleeder? A diagnostic framework for mild bleeding disorders. Hematology Am Soc Hematol Educ Program 2012; 2012: 466-474
  • 2 Hayward CP, Moffat KA, Pai M , et al. An evaluation of methods for determining reference intervals for light transmission platelet aggregation tests on samples with normal or reduced platelet counts. Thromb Haemost 2008; 100 (1) 134-145
  • 3 Shattil SJ, Cunningham M, Hoxie JA. Detection of activated platelets in whole blood using activation-dependent monoclonal antibodies and flow cytometry. Blood 1987; 70 (1) 307-315
  • 4 Merolla M, Nardi MA, Berger JS. Centrifugation speed affects light transmission aggregometry. Int J Lab Hematol 2012; 34 (1) 81-85
  • 5 Femia EA, Pugliano M, Podda G, Cattaneo M. Comparison of different procedures to prepare platelet-rich plasma for studies of platelet aggregation by light transmission aggregometry. Platelets 2012; 23 (1) 7-10
  • 6 Lyon ME, Fine JS, Henderson PJ, Lyon AW. D-phenylalanyl-L-prolyl-L-arginine chloromethyl ketone (PPACK): alternative anticoagulant to heparin salts for blood gas and electrolyte specimens. Clin Chem 1995; 41 (7) 1038-1041
  • 7 Ginsberg MH, Lightsey A, Kunicki TJ, Kaufmann A, Marguerie G, Plow EF. Divalent cation regulation of the surface orientation of platelet membrane glycoprotein IIb. Correlation with fibrinogen binding function and definition of a novel variant of Glanzmann's thrombasthenia. J Clin Invest 1986; 78 (4) 1103-1111
  • 8 Lindahl TL, Festin R, Larsson A. Studies of fibrinogen binding to platelets by flow cytometry: an improved method for studies of platelet activation. Thromb Haemost 1992; 68 (2) 221-225
  • 9 Storey RF, May JA, Wilcox RG, Heptinstall S. A whole blood assay of inhibition of platelet aggregation by glycoprotein IIb/IIIa antagonists: comparison with other aggregation methodologies. Thromb Haemost 1999; 82 (4) 1307-1311
  • 10 Storey RF, Wilcox RG, Heptinstall S. Differential effects of glycoprotein IIb/IIIa antagonists on platelet microaggregate and macroaggregate formation and effect of anticoagulant on antagonist potency. Implications for assay methodology and comparison of different antagonists. Circulation 1998; 98 (16) 1616-1621
  • 11 Packham MA, Bryant NL, Guccione MA, Kinlough-Rathbone RL, Mustard JF. Effect of the concentration of Ca2+ in the suspending medium on the responses of human and rabbit platelets to aggregating agents. Thromb Haemost 1989; 62 (3) 968-976
  • 12 Packham MA, Kinlough-Rathbone RL, Mustard JF. Thromboxane A2 causes feedback amplification involving extensive thromboxane A2 formation on close contact of human platelets in media with a low concentration of ionized calcium. Blood 1987; 70 (3) 647-651
  • 13 Wallén NH, Ladjevardi M, Albert J, Bröijersén A. Influence of different anticoagulants on platelet aggregation in whole blood; a comparison between citrate, low molecular mass heparin and hirudin. Thromb Res 1997; 87 (1) 151-157
  • 14 Laudano AP, Cottrell BA, Doolittle RF. Synthetic peptides modeled on fibrin polymerization sites. Ann N Y Acad Sci 1983; 408: 315-329
  • 15 Kawasaki K, Hirase K, Miyano M, Tsuji T, Iwamoto M. Amino acids and peptides. XVI. Synthesis of N-terminal tetrapeptide analogs of fibrin α-chain and their inhibitory effects on fibrinogen/thrombin clotting. Chem Pharm Bull (Tokyo) 1992; 40 (12) 3253-3260
  • 16 Laudano AP, Doolittle RF. Studies on synthetic peptides that bind to fibrinogen and prevent fibrin polymerization. Structural requirements, number of binding sites, and species differences. Biochemistry 1980; 19 (5) 1013-1019
  • 17 Michelson AD. Platelet activation by thrombin can be directly measured in whole blood through the use of the peptide GPRP and flow cytometry: methods and clinical applications. Blood Coagul Fibrinolysis 1994; 5 (1) 121-131
  • 18 Burgess JK, Chong BH. The platelet proaggregating and potentiating effects of unfractionated heparin, low molecular weight heparin and heparinoid in intensive care patients and healthy controls. Eur J Haematol 1997; 58 (4) 279-285
  • 19 Messmore Jr HL, Griffin B, Fareed J, Coyne E, Seghatchian J. In vitro studies of the interaction of heparin, low molecular weight heparin and heparinoids with platelets. Ann N Y Acad Sci 1989; 556: 217-232
  • 20 Kozek-Langenecker SA, Mohammad SF, Masaki T, Kamerath C, Cheung AK. The effects of heparin, protamine, and heparinase 1 on platelets in vitro using whole blood flow cytometry. Anesth Analg 2000; 90 (4) 808-812
  • 21 Michelson AD. Flow cytometry: a clinical test of platelet function. Blood 1996; 87 (12) 4925-4936
  • 22 Harrison P, Mackie I, Mumford A , et al; British Committee for Standards in Haematology. Guidelines for the laboratory investigation of heritable disorders of platelet function. Br J Haematol 2011; 155 (1) 30-44
  • 23 Wallin O, Söderberg J, Grankvist K, Jonsson PA, Hultdin J. Preanalytical effects of pneumatic tube transport on routine haematology, coagulation parameters, platelet function and global coagulation. Clin Chem Lab Med 2008; 46 (10) 1443-1449
  • 24 Glas M, Mauer D, Kassas H, Volk T, Kreuer S. Sample transport by pneumatic tube system alters results of multiple electrode aggregometry but not rotational thromboelastometry. Platelets 2013; 24 (6) 454-461
  • 25 Kaiser AF, Neubauer H, Franken CC, Krüger JC, Mügge A, Meves SH. Which is the best anticoagulant for whole blood aggregometry platelet function testing? Comparison of six anticoagulants and diverse storage conditions. Platelets 2012; 23 (5) 359-367
  • 26 Rubak P, Nissen PH, Kristensen SD, Hvas AM. Investigation of platelet function and platelet disorders using flow cytometry. Platelets 2016; 27 (1) 66-74
  • 27 Ramström S, Oberg KV, Akerström F, Enström C, Lindahl TL. Platelet PAR1 receptor density—correlation to platelet activation response and changes in exposure after platelet activation. Thromb Res 2008; 121 (5) 681-688
  • 28 Schmitz G, Rothe G, Ruf A , et al. European Working Group on Clinical Cell Analysis: Consensus protocol for the flow cytometric characterisation of platelet function. Thromb Haemost 1998; 79 (5) 885-896
  • 29 Shattil SJ, Hoxie JA, Cunningham M, Brass LF. Changes in the platelet membrane glycoprotein IIb.IIIa complex during platelet activation. J Biol Chem 1985; 260 (20) 11107-11114
  • 30 Goodall AH, de Oliveira Domingos M, Chronos N, Janes SL, Wilson DJ. Flow cytometric detection of the redistribution of the glycoprotein Ib-IX complex on thrombin-stimulated platelets is dependent on the type of antibody conjugate used. Blood 1993; 81 (5) 1407-1409
  • 31 Hulspas R, O'Gorman MR, Wood BL, Gratama JW, Sutherland DR. Considerations for the control of background fluorescence in clinical flow cytometry. Cytometry B Clin Cytom 2009; 76 (6) 355-364
  • 32 Maecker HT, Trotter J. Flow cytometry controls, instrument setup, and the determination of positivity. Cytometry A 2006; 69 (9) 1037-1042
  • 33 Giebish G, Windhager E. Transport of urea, glucose, phosphate, calcium, magnesium and organic solutes. In: Boron WF, Boulpaep EL, eds. Medical Physiology. 2nd ed. Philadelphia, PA: Saunders Elsevier; 2009: 797-820 , Chapter 36
  • 34 Rink TJ, Sage SO. Calcium signaling in human platelets. Annu Rev Physiol 1990; 52: 431-449
  • 35 Heemskerk JW, Feijge MA, Andree HA, Sage SO. Function of intracellular [Ca2+]i in exocytosis and transbilayer movement in human platelets surface-labeled with the fluorescent probe 1-(4-trimethylammonio)phenyl)-6-phenyl-1,3,5-hexatriene. Biochim Biophys Acta 1993; 1147 (2) 194-204
  • 36 Pasquet JM, Dachary-Prigent J, Nurden AT. Calcium influx is a determining factor of calpain activation and microparticle formation in platelets. Eur J Biochem 1996; 239 (3) 647-654
  • 37 Munnix IC, Kuijpers MJ, Auger J , et al. Segregation of platelet aggregatory and procoagulant microdomains in thrombus formation: regulation by transient integrin activation. Arterioscler Thromb Vasc Biol 2007; 27 (11) 2484-2490
  • 38 Feinman RD, Detwiler TC. Platelet secretion induced by divalent cation ionophores. Nature 1974; 249 (453) 172-173
  • 39 Thiagarajan P, Tait JF. Binding of annexin V/placental anticoagulant protein I to platelets. Evidence for phosphatidylserine exposure in the procoagulant response of activated platelets. J Biol Chem 1990; 265 (29) 17420-17423
  • 40 Reutelingsperger CP, Kop JM, Hornstra G, Hemker HC. Purification and characterization of a novel protein from bovine aorta that inhibits coagulation. Inhibition of the phospholipid-dependent factor-Xa-catalyzed prothrombin activation, through a high-affinity binding of the anticoagulant to the phospholipids. Eur J Biochem 1988; 173 (1) 171-178
  • 41 Andree HA, Reutelingsperger CP, Hauptmann R, Hemker HC, Hermens WT, Willems GM. Binding of vascular anticoagulant alpha (VAC alpha) to planar phospholipid bilayers. J Biol Chem 1990; 265 (9) 4923-4928
  • 42 Mann KG, Nesheim ME, Church WR, Haley P, Krishnaswamy S. Surface-dependent reactions of the vitamin K-dependent enzyme complexes. Blood 1990; 76 (1) 1-16
  • 43 Berny-Lang MA, Frelinger III AL, Barnard MR, Michelson AD, Flow cytometry. In: Michelson AD. ed. Platelets. 3rd ed. San Diego, CA: Academic Press; 2013: 581-602
  • 44 Harrison P, Ault KA, Chapman S , et al; International Society of Laboratory Hematology Task Force for the Reference Platelet Count. An interlaboratory study of a candidate reference method for platelet counting. Am J Clin Pathol 2001; 115 (3) 448-459
  • 45 Niccolai E, Emmi G, Squatrito D , et al. Microparticles: bridging the gap between autoimmunity and thrombosis. Semin Thromb Hemost 2015; 41 (4) 413-422
  • 46 Nomura S, Shimizu M. Clinical significance of procoagulant microparticles. J Intensive Care 2015; 3 (1) 2
  • 47 van der Pol E, Coumans F, Varga Z, Krumrey M, Nieuwland R. Innovation in detection of microparticles and exosomes. J Thromb Haemost 2013; 11 (Suppl. 01) 36-45
  • 48 Crompot E, Van Damme M, Duvillier H , et al. Avoiding false positive antigen detection by flow cytometry on blood cell derived microparticles: the importance of an appropriate negative control. PLoS ONE 2015; 10 (5) e0127209
  • 49 Freyssinet JM, Toti F. Membrane microparticle determination: at least seeing what's being sized!. J Thromb Haemost 2010; 8 (2) 311-314
  • 50 Harrison P, Gardiner C. Invisible vesicles swarm within the iceberg. J Thromb Haemost 2012; 10 (5) 916-918
  • 51 van der Pol E, van Gemert MJ, Sturk A, Nieuwland R, van Leeuwen TG. Single vs. swarm detection of microparticles and exosomes by flow cytometry. J Thromb Haemost 2012; 10 (5) 919-930
  • 52 Bode AP, Hickerson DH. Characterization and quantitation by flow cytometry of membranous microparticles formed during activation of platelet suspensions with ionophore or thrombin. Platelets 2000; 11 (5) 259-271
  • 53 Lacroix R, Robert S, Poncelet P, Dignat-George F. Overcoming limitations of microparticle measurement by flow cytometry. Semin Thromb Hemost 2010; 36 (8) 807-818
  • 54 Södergren AL, Tynngård N, Berlin G, Ramström S. Responsiveness of platelets during storage studied with flow cytometry - formation of platelet subpopulations and LAMP-1 as new markers for the platelet storage lesion (e-pub ahead of print). Vox Sang 2015; ; doi: 10.1111/vox.12324
  • 55 Poncelet P, Robert S, Bouriche T, Bez J, Lacroix R, Dignat-George F. Standardized counting of circulating platelet microparticles using currently available flow cytometers and scatter-based triggering: Forward or side scatter? (e-pub ahead of print) . Cytometry A 2015; ;doi: 10.1002/cyto.a.22685
  • 56 Gresele P ; Subcommittee on Platelet Physiology. Diagnosis of inherited platelet function disorders: guidance from the SSC of the ISTH. J Thromb Haemost 2015; 13 (2) 314-322
  • 57 Michelson AD, Benoit SE, Kroll MH , et al. The activation-induced decrease in the platelet surface expression of the glycoprotein Ib-IX complex is reversible. Blood 1994; 83 (12) 3562-3573
  • 58 Ginsberg MH, Frelinger AL, Lam SC , et al. Analysis of platelet aggregation disorders based on flow cytometric analysis of membrane glycoprotein IIb-IIIa with conformation-specific monoclonal antibodies. Blood 1990; 76 (10) 2017-2023
  • 59 Frelinger III AL, Cohen I, Plow EF , et al. Selective inhibition of integrin function by antibodies specific for ligand-occupied receptor conformers. J Biol Chem 1990; 265 (11) 6346-6352
  • 60 Frelinger III AL, Lam SC, Plow EF, Smith MA, Loftus JC, Ginsberg MH. Occupancy of an adhesive glycoprotein receptor modulates expression of an antigenic site involved in cell adhesion. J Biol Chem 1988; 263 (25) 12397-12402
  • 61 Abrams CS, Ellison N, Budzynski AZ, Shattil SJ. Direct detection of activated platelets and platelet-derived microparticles in humans. Blood 1990; 75 (1) 128-138
  • 62 Gralnick HR, Williams SB, McKeown L , et al. Endogenous platelet fibrinogen: its modulation after surface expression is related to size-selective access to and conformational changes in the bound fibrinogen. Br J Haematol 1992; 80 (3) 347-357
  • 63 Zamarron C, Ginsberg MH, Plow EF. Monoclonal antibodies specific for a conformationally altered state of fibrinogen. Thromb Haemost 1990; 64 (1) 41-46
  • 64 Faraday N, Goldschmidt-Clermont P, Dise K, Bray PF. Quantitation of soluble fibrinogen binding to platelets by fluorescence-activated flow cytometry. J Lab Clin Med 1994; 123 (5) 728-740
  • 65 Heilmann E, Hynes LA, Burstein SA, George JN, Dale GL. Fluorescein derivatization of fibrinogen for flow cytometric analysis of fibrinogen binding to platelets. Cytometry 1994; 17 (4) 287-293
  • 66 Schoolmeester A, Vanhoorelbeke K, Katsutani S , et al. Monoclonal antibody IAC-1 is specific for activated alpha2beta1 and binds to amino acids 199 to 201 of the integrin alpha2 I-domain. Blood 2004; 104 (2) 390-396
  • 67 Carmody MW, Ault KA, Mitchell JG, Rote NS, Ng AK. Production of monoclonal antibodies specific for platelet activation antigens and their use in evaluating platelet function. Hybridoma 1990; 9 (6) 631-641
  • 68 Larsen E, Celi A, Gilbert GE , et al. PADGEM protein: a receptor that mediates the interaction of activated platelets with neutrophils and monocytes. Cell 1989; 59 (2) 305-312
  • 69 Stenberg PE, McEver RP, Shuman MA, Jacques YV, Bainton DF. A platelet alpha-granule membrane protein (GMP-140) is expressed on the plasma membrane after activation. J Cell Biol 1985; 101 (3) 880-886
  • 70 Henn V, Slupsky JR, Gräfe M , et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 1998; 391 (6667) 591-594
  • 71 Aiken ML, Ginsberg MH, Plow EF. Mechanisms for expression of thrombospondin on the platelet cell surface. Semin Thromb Hemost 1987; 13 (3) 307-316
  • 72 Boukerche H, McGregor JL. Characterization of an anti-thrombospondin monoclonal antibody (P8) that inhibits human blood platelet functions. Normal binding of P8 to thrombin-activated Glanzmann thrombasthenic platelets. Eur J Biochem 1988; 171 (1–2) 383-392
  • 73 Damas C, Vink T, Nieuwenhuis HK, Sixma JJ. The 33-kDa platelet alpha-granule membrane protein (GMP-33) is an N-terminal proteolytic fragment of thrombospondin. Thromb Haemost 2001; 86 (3) 887-893
  • 74 Metzelaar MJ, Heijnen HF, Sixma JJ, Nieuwenhuis HK. Identification of a 33-Kd protein associated with the alpha-granule membrane (GMP-33) that is expressed on the surface of activated platelets. Blood 1992; 79 (2) 372-379
  • 75 Hayward CP, Furmaniak-Kazmierczak E, Cieutat AM , et al. Factor V is complexed with multimerin in resting platelet lysates and colocalizes with multimerin in platelet alpha-granules. J Biol Chem 1995; 270 (33) 19217-19224
  • 76 Hayward CP, Smith JW, Horsewood P, Warkentin TE, Kelton JG. p-155, a multimeric platelet protein that is expressed on activated platelets. J Biol Chem 1991; 266 (11) 7114-7120
  • 77 Wall JE, Buijs-Wilts M, Arnold JT , et al. A flow cytometric assay using mepacrine for study of uptake and release of platelet dense granule contents. Br J Haematol 1995; 89 (2) 380-385
  • 78 Ramström AS, Fagerberg IH, Lindahl TL. A flow cytometric assay for the study of dense granule storage and release in human platelets. Platelets 1999; 10 (2–3) 153-158
  • 79 Gordon N, Thom J, Cole C, Baker R. Rapid detection of hereditary and acquired platelet storage pool deficiency by flow cytometry. Br J Haematol 1995; 89 (1) 117-123
  • 80 Nieuwenhuis HK, van Oosterhout JJ, Rozemuller E, van Iwaarden F, Sixma JJ. Studies with a monoclonal antibody against activated platelets: evidence that a secreted 53,000-molecular weight lysosome-like granule protein is exposed on the surface of activated platelets in the circulation. Blood 1987; 70 (3) 838-845
  • 81 Silverstein RL, Febbraio M. Identification of lysosome-associated membrane protein-2 as an activation-dependent platelet surface glycoprotein. Blood 1992; 80 (6) 1470-1475
  • 82 Israels SJ, McMillan EM, Robertson C, Singhory S, McNicol A. The lysosomal granule membrane protein, LAMP-2, is also present in platelet dense granule membranes. Thromb Haemost 1996; 75 (4) 623-629
  • 83 Nishibori M, Cham B, McNicol A, Shalev A, Jain N, Gerrard JM. The protein CD63 is in platelet dense granules, is deficient in a patient with Hermansky-Pudlak syndrome, and appears identical to granulophysin. J Clin Invest 1993; 91 (4) 1775-1782
  • 84 Febbraio M, Silverstein RL. Identification and characterization of LAMP-1 as an activation-dependent platelet surface glycoprotein. J Biol Chem 1990; 265 (30) 18531-18537
  • 85 Södergren AL, Svensson Holm AB, Ramström S, Lindström EG, Grenegård M, Öllinger K. Thrombin-induced lysosomal exocytosis in human platelets is dependent on secondary activation by ADP and regulated by endothelial-derived substances. Platelets 2016; 27 (1) 86-92
  • 86 Dachary-Prigent J, Freyssinet JM, Pasquet JM, Carron JC, Nurden AT. Annexin V as a probe of aminophospholipid exposure and platelet membrane vesiculation: a flow cytometry study showing a role for free sulfhydryl groups. Blood 1993; 81 (10) 2554-2565
  • 87 Albanyan AM, Murphy MF, Rasmussen JT, Heegaard CW, Harrison P. Measurement of phosphatidylserine exposure during storage of platelet concentrates using the novel probe lactadherin: a comparison study with annexin V. Transfusion 2009; 49 (1) 99-107
  • 88 Dasgupta SK, Guchhait P, Thiagarajan P. Lactadherin binding and phosphatidylserine expression on cell surface-comparison with annexin A5. Transl Res 2006; 148 (1) 19-25
  • 89 Shi J, Heegaard CW, Rasmussen JT, Gilbert GE. Lactadherin binds selectively to membranes containing phosphatidyl-L-serine and increased curvature. Biochim Biophys Acta 2004; 1667 (1) 82-90
  • 90 Furman MI, Krueger LA, Frelinger III AL , et al. GPIIb-IIIa antagonist-induced reduction in platelet surface factor V/Va binding and phosphatidylserine expression in whole blood. Thromb Haemost 2000; 84 (3) 492-498
  • 91 Sims PJ, Faioni EM, Wiedmer T, Shattil SJ. Complement proteins C5b-9 cause release of membrane vesicles from the platelet surface that are enriched in the membrane receptor for coagulation factor Va and express prothrombinase activity. J Biol Chem 1988; 263 (34) 18205-18212
  • 92 Holme PA, Brosstad F, Solum NO. Platelet-derived microvesicles and activated platelets express factor Xa activity. Blood Coagul Fibrinolysis 1995; 6 (4) 302-310
  • 93 Gilbert GE, Sims PJ, Wiedmer T, Furie B, Furie BC, Shattil SJ. Platelet-derived microparticles express high affinity receptors for factor VIII. J Biol Chem 1991; 266 (26) 17261-17268
  • 94 Schwarz UR, Geiger J, Walter U, Eigenthaler M. Flow cytometry analysis of intracellular VASP phosphorylation for the assessment of activating and inhibitory signal transduction pathways in human platelets—definition and detection of ticlopidine/clopidogrel effects. Thromb Haemost 1999; 82 (3) 1145-1152
  • 95 Dachary-Prigent J, Pasquet JM, Freyssinet JM, Nurden AT. Calcium involvement in aminophospholipid exposure and microparticle formation during platelet activation: a study using Ca2+-ATPase inhibitors. Biochemistry 1995; 34 (36) 11625-11634
  • 96 Assinger A, Volf I, Schmid D. A novel, rapid method to quantify intraplatelet calcium dynamics by ratiometric flow cytometry. PLoS ONE 2015; 10 (4) e0122527
  • 97 Davies TA, Drotts D, Weil GJ, Simons ER. Flow cytometric measurements of cytoplasmic calcium changes in human platelets. Cytometry 1988; 9 (2) 138-142
  • 98 Probes for membrane potential. In: Johnson I, Spence M. eds. The Molecular Probes® Handbook: A Guide to Fluorescent Probes and Labeling Technologies. 11th ed. Life Technologies; 2010: 924-936 . Available at: www.lifetechnologies.com/handbook
  • 99 Gyulkhandanyan AV, Mutlu A, Freedman J, Leytin V. Markers of platelet apoptosis: methodology and applications. J Thromb Thrombolysis 2012; 33 (4) 397-411
  • 100 Bernardi P, Scorrano L, Colonna R, Petronilli V, Di Lisa F. Mitochondria and cell death. Mechanistic aspects and methodological issues. Eur J Biochem 1999; 264 (3) 687-701
  • 101 Fox SC, Burgess-Wilson M, Heptinstall S, Mitchell JR. Platelet aggregation in whole blood determined using the Ultra-Flo 100 Platelet Counter. Thromb Haemost 1982; 48 (3) 327-329
  • 102 Tynngård N, Wallstedt M, Södergren AL, Faxälv L, Ramström S. Platelet adhesion changes during storage studied with a novel method using flow cytometry and protein-coated beads. Platelets 2015; 26 (2) 177-185
  • 103 Michelson AD, Barnard MR, Krueger LA, Valeri CR, Furman MI. Circulating monocyte-platelet aggregates are a more sensitive marker of in vivo platelet activation than platelet surface P-selectin: studies in baboons, human coronary intervention, and human acute myocardial infarction. Circulation 2001; 104 (13) 1533-1537
  • 104 Izzi B, Pampuch A, Costanzo S , et al. Determinants of platelet conjugate formation with polymorphonuclear leukocytes or monocytes in whole blood. Thromb Haemost 2007; 98 (6) 1276-1284
  • 105 Rinder HM, Bonan JL, Rinder CS, Ault KA, Smith BR. Dynamics of leukocyte-platelet adhesion in whole blood. Blood 1991; 78 (7) 1730-1737
  • 106 Klinkhardt U, Harder S. Flow cytometric measurement of platelet-leukocyte aggregates: a possible target to monitor platelet function?. Semin Thromb Hemost 2005; 31 (4) 400-403
  • 107 Bihari P, Fent J, Hamar J, Furész J, Lakatos S. An easy-to-use practical method to measure coincidence in the flow cytometer—the case of platelet-granulocyte complex determination. J Biochem Biophys Methods 2008; 70 (6) 1080-1085
  • 108 Hagberg IA, Lyberg T. Evaluation of circulating platelet-leukocyte conjugates: a sensitive flow cytometric assay well suited for clinical studies. Platelets 2000; 11 (3) 151-160
  • 109 Michelson AD, Barnard MR, Hechtman HB , et al. In vivo tracking of platelets: circulating degranulated platelets rapidly lose surface P-selectin but continue to circulate and function. Proc Natl Acad Sci U S A 1996; 93 (21) 11877-11882
  • 110 Hagberg IA, Lyberg T. Blood platelet activation evaluated by flow cytometry: optimised methods for clinical studies. Platelets 2000; 11 (3) 137-150
  • 111 Li N, Hu H, Hjemdahl P. Aspirin treatment does not attenuate platelet or leukocyte activation as monitored by whole blood flow cytometry. Thromb Res 2003; 111 (3) 165-170
  • 112 Rinder CS, Student LA, Bonan JL, Rinder HM, Smith BR. Aspirin does not inhibit adenosine diphosphate-induced platelet alpha-granule release. Blood 1993; 82 (2) 505-512
  • 113 Chronos NA, Wilson DJ, Janes SL, Hutton RA, Buller NP, Goodall AH. Aspirin does not affect the flow cytometric detection of fibrinogen binding to, or release of alpha-granules or lysosomes from, human platelets. Clin Sci (Lond) 1994; 87 (5) 575-580
  • 114 Scharbert G, Kalb M, Marschalek C, Kozek-Langenecker SA. The effects of test temperature and storage temperature on platelet aggregation: a whole blood in vitro study. Anesth Analg 2006; 102 (4) 1280-1284
  • 115 Ramstrom S, O'Neill S, Dunne E, Kenny D. Annexin V binding to platelets is agonist, time and temperature dependent. Platelets 2010; 21 (4) 289-296
  • 116 Hui KY, Jakubowski JA, Wyss VL, Angleton EL. Minimal sequence requirement of thrombin receptor agonist peptide. Biochem Biophys Res Commun 1992; 184 (2) 790-796
  • 117 Blackhart BD, Emilsson K, Nguyen D , et al. Ligand cross-reactivity within the protease-activated receptor family. J Biol Chem 1996; 271 (28) 16466-16471
  • 118 Martorell L, Martínez-González J, Rodríguez C, Gentile M, Calvayrac O, Badimon L. Thrombin and protease-activated receptors (PARs) in atherothrombosis. Thromb Haemost 2008; 99 (2) 305-315
  • 119 Hollenberg MD, Saifeddine M, Sandhu S, Houle S, Vergnolle N. Proteinase-activated receptor-4: evaluation of tethered ligand-derived peptides as probes for receptor function and as inflammatory agonists in vivo. Br J Pharmacol 2004; 143 (4) 443-454
  • 120 Morton LF, Hargreaves PG, Farndale RW, Young RD, Barnes MJ. Integrin alpha 2 beta 1-independent activation of platelets by simple collagen-like peptides: collagen tertiary (triple-helical) and quaternary (polymeric) structures are sufficient alone for alpha 2 beta 1-independent platelet reactivity. Biochem J 1995; 306 (Pt 2) 337-344
  • 121 Kehrel B, Wierwille S, Clemetson KJ , et al. Glycoprotein VI is a major collagen receptor for platelet activation: it recognizes the platelet-activating quaternary structure of collagen, whereas CD36, glycoprotein IIb/IIIa, and von Willebrand factor do not. Blood 1998; 91 (2) 491-499
  • 122 Polgár J, Clemetson JM, Kehrel BE , et al. Platelet activation and signal transduction by convulxin, a C-type lectin from Crotalus durissus terrificus (tropical rattlesnake) venom via the p62/GPVI collagen receptor. J Biol Chem 1997; 272 (21) 13576-13583
  • 123 Shattil SJ, Budzynski A, Scrutton MC. Epinephrine induces platelet fibrinogen receptor expression, fibrinogen binding, and aggregation in whole blood in the absence of other excitatory agonists. Blood 1989; 73 (1) 150-158
  • 124 Bundy GL. The synthesis of prostaglandin endoperoxide analogs. Tetrahedron Lett 1975; 24: 1957-1960
  • 125 Morinelli TA, Niewiarowski S, Daniel JL, Smith JB. Receptor-mediated effects of a PGH2 analogue (U 46619) on human platelets. Am J Physiol 1987; 253 (5, Pt 2) H1035-H1043
  • 126 Bergmeier W, Bouvard D, Eble JA , et al. Rhodocytin (aggretin) activates platelets lacking alpha(2)beta(1) integrin, glycoprotein VI, and the ligand-binding domain of glycoprotein Ibalpha. J Biol Chem 2001; 276 (27) 25121-25126
  • 127 Manne BK, Getz TM, Hughes CE , et al. Fucoidan is a novel platelet agonist for the C-type lectin-like receptor 2 (CLEC-2). J Biol Chem 2013; 288 (11) 7717-7726
  • 128 Suzuki-Inoue K, Inoue O, Ozaki Y. The novel platelet activation receptor CLEC-2. Platelets 2011; 22 (5) 380-384
  • 129 Li N, Wallén NH, Ladjevardi M, Hjemdahl P. Effects of serotonin on platelet activation in whole blood. Blood Coagul Fibrinolysis 1997; 8 (8) 517-523
  • 130 Hübl W, Assadian A, Lax J , et al. Assessing aspirin-induced attenuation of platelet reactivity by flow cytometry. Thromb Res 2007; 121 (1) 135-143
  • 131 Rukoyatkina N, Mindukshev I, Walter U, Gambaryan S. Dual role of the p38 MAPK/cPLA2 pathway in the regulation of platelet apoptosis induced by ABT-737 and strong platelet agonists. Cell Death Dis 2013; 4: e931
  • 132 Cohen HJ, Chovaniec ME, Takahashi K, Whitin JC. Activation of human granulocytes by arachidonic acid: its use and limitations for investigating granulocyte functions. Blood 1986; 67 (4) 1103-1109
  • 133 Ts'ao C, Holly CM. Arachidonic acid causes lysis of human platelets in an artificial medium: protection by plasma. Prostaglandins 1979; 17 (5) 775-784
  • 134 Maclouf J, Levy-Toledano S, Savariau E, Hardisty R, Caen JP. Arachidonic acid-induced human platelet aggregation independent of cyclooxygenase and lipoxygenase. Prostaglandins 1984; 28 (3) 383-398
  • 135 Lindahl TL, Fagerberg IH, Larsson A. A new flow cytometric method for measurement of von Willebrand factor activity. Scand J Clin Lab Invest 2003; 63 (3) 217-223
  • 136 Li S, Wang Z, Liao Y , et al. The glycoprotein Ibalpha-von Willebrand factor interaction induces platelet apoptosis. J Thromb Haemost 2010; 8 (2) 341-350
  • 137 Storey RF, Sanderson HM, White AE, May JA, Cameron KE, Heptinstall S. The central role of the P(2T) receptor in amplification of human platelet activation, aggregation, secretion and procoagulant activity. Br J Haematol 2000; 110 (4) 925-934
  • 138 Blais N, Pharand C, Lordkipanidzé M, Sia YK, Merhi Y, Diodati JG. Response to aspirin in healthy individuals. Cross-comparison of light transmission aggregometry, VerifyNow system, platelet count drop, thromboelastography (TEG) and urinary 11-dehydrothromboxane B(2). Thromb Haemost 2009; 102 (2) 404-411
  • 139 Dawood BB, Wilde J, Watson SP. Reference curves for aggregation and ATP secretion to aid diagnose of platelet-based bleeding disorders: effect of inhibition of ADP and thromboxane A(2) pathways. Platelets 2007; 18 (5) 329-345
  • 140 Dawood BB, Lowe GC, Lordkipanidzé M , et al. Evaluation of participants with suspected heritable platelet function disorders including recommendation and validation of a streamlined agonist panel. Blood 2012; 120 (25) 5041-5049
  • 141 Watson SP, Lowe GC, Lordkipanidzé M, Morgan NV ; GAPP consortium. Genotyping and phenotyping of platelet function disorders. J Thromb Haemost 2013; 11 (Suppl. 01) 351-363
  • 142 Yee DL, Sun CW, Bergeron AL, Dong JF, Bray PF. Aggregometry detects platelet hyperreactivity in healthy individuals. Blood 2005; 106 (8) 2723-2729
  • 143 Ruf A, Patscheke H. Flow cytometric detection of activated platelets: comparison of determining shape change, fibrinogen binding, and P-selectin expression. Semin Thromb Hemost 1995; 21 (2) 146-151
  • 144 Goodall AH, Appleby J. Flow-cytometric analysis of platelet-membrane glycoprotein expression and platelet activation. In: Gibbins JM, Mahaut-Smith MP, eds. Methods in Molecular Biology. Vol. 272. Totowa, NJ: Humana Press Inc.; 2004: 225-236
  • 145 Schwartz A, Gaigalas AK, Wang L, Marti GE, Vogt RF, Fernandez-Repollet E. Formalization of the MESF unit of fluorescence intensity. Cytometry B Clin Cytom 2004; 57 (1) 1-6
  • 146 CLSI. Defining, Establishing, and Verifying Reference Intervals in the Clinical Laboratory: Approved Guideline EP28–A3c. Wayne, PA: Clinical and Laboratory Standards Institute; 2008
  • 147 Linnet K. Nonparametric estimation of reference intervals by simple and bootstrap-based procedures. Clin Chem 2000; 46 (6, Pt 1) 867-869
  • 148 Horn PS, Pesce AJ. Chemistry AAfC. Reference Intervals: A User's Guide. Washington, DC: AACC Press; 2005
  • 149 Siest G, Henny J, Gräsbeck R , et al. The theory of reference values: an unfinished symphony. Clin Chem Lab Med 2013; 51 (1) 47-64
  • 150 Gresele P, Harrison P, Bury L , et al. Diagnosis of suspected inherited platelet function disorders: results of a worldwide survey. J Thromb Haemost 2014; 12 (9) 1562-1569
  • 151 Hagberg IA, Akkok CA, Lyberg T, Kjeldsen-Kragh J. Apheresis-induced platelet activation:comparison of three types of cell separators. Transfusion 2000; 40 (2) 182-192
  • 152 Johnson L, Loh YS, Kwok M, Marks DC. In vitro assessment of buffy-coat derived platelet components suspended in SSP+ treated with the INTERCEPT Blood system. Transfus Med 2013; 23 (2) 121-129
  • 153 Metcalfe P, Williamson LM, Reutelingsperger CP, Swann I, Ouwehand WH, Goodall AH. Activation during preparation of therapeutic platelets affects deterioration during storage: a comparative flow cytometric study of different production methods. Br J Haematol 1997; 98 (1) 86-95
  • 154 Zhang JG, Carter CJ, Culibrk B , et al. Buffy-coat platelet variables and metabolism during storage in additive solutions or plasma. Transfusion 2008; 48 (5) 847-856
  • 155 Krailadsiri P, Seghatchian J. Are all leucodepleted platelet concentrates equivalent? Comparison of Cobe LRS Turbo, Haemonetics MCS+ LD, and filtered pooled buffy-coat-derived platelets. Vox Sang 2000; 78 (3) 171-175
  • 156 Sandgren P, Saeed K. Storage of buffy-coat-derived platelets in additive solution: in vitro effects on platelets of the air bubbles and foam included in the final unit. Blood Transfus 2011; 9 (2) 182-188
  • 157 Apelseth TO, Bruserud Ø, Wentzel-Larsen T, Bakken AM, Bjørsvik S, Hervig T. In vitro evaluation of metabolic changes and residual platelet responsiveness in photochemical treated and gamma-irradiated single-donor platelet concentrates during long-term storage. Transfusion 2007; 47 (4) 653-665
  • 158 Lozano ML, Rivera J, Gónzález-Conejero R, Moraleda JM, Vicente V. Loss of high-affinity thrombin receptors during platelet concentrate storage impairs the reactivity of platelets to thrombin. Transfusion 1997; 37 (4) 368-375
  • 159 Picker SM, Schneider V, Gathof BS. Platelet function assessed by shear-induced deposition of split triple-dose apheresis concentrates treated with pathogen reduction technologies. Transfusion 2009; 49 (6) 1224-1232
  • 160 Wang C, Mody M, Herst R, Sher G, Freedman J. Flow cytometric analysis of platelet function in stored platelet concentrates. Transfus Sci 1999; 20 (2) 129-139
  • 161 Sandgren P, Meinke S, Eckert E, Douagi I, Wikman A, Höglund P. Random aggregates in newly produced platelet units are associated with platelet activation and release of the immunomodulatory factors sCD40L and RANTES. Transfusion 2014; 54 (3) 602-612
  • 162 Holme S, Sweeney JD, Sawyer S, Elfath MD. The expression of p-selectin during collection, processing, and storage of platelet concentrates: relationship to loss of in vivo viability. Transfusion 1997; 37 (1) 12-17
  • 163 Rinder HM, Murphy M, Mitchell JG, Stocks J, Ault KA, Hillman RS. Progressive platelet activation with storage: evidence for shortened survival of activated platelets after transfusion. Transfusion 1991; 31 (5) 409-414
  • 164 Rinder HM, Smith BR. In vitro evaluation of stored platelets: is there hope for predicting posttransfusion platelet survival and function?. Transfusion 2003; 43 (1) 2-6
  • 165 Mallouk N, Labruyère C, Reny JL , et al. Prevalence of poor biological response to clopidogrel: a systematic review. Thromb Haemost 2012; 107 (3) 494-506
  • 166 Gorog DA, Fuster V. Platelet function tests in clinical cardiology: unfulfilled expectations. J Am Coll Cardiol 2013; 61 (21) 2115-2129
  • 167 Jakubowski JA, Bourguet N, Boulay-Moine D , et al. Comparison of a new ELISA assay with the flow cytometric assay for platelet vasodilator-associated stimulated phosphoprotein (VASP) phosphorylation in whole blood to assess P2Y(12) inhibition. Thromb Haemost 2012; 107 (2) 388-395
  • 168 Gremmel T, Koppensteiner R, Panzer S. Comparison of aggregometry with flow cytometry for the assessment of agonistś-induced platelet reactivity in patients on dual antiplatelet therapy. PLoS ONE 2015; 10 (6) e0129666
  • 169 Kirkpatrick AC, Stoner JA, Dale GL, Prodan CI. Elevated coated-platelets in symptomatic large-artery stenosis patients are associated with early stroke recurrence. Platelets 2014; 25 (2) 93-96
  • 170 Kirkpatrick AC, Tafur AJ, Vincent AS, Dale GL, Prodan CI. Coated-platelets improve prediction of stroke and transient ischemic attack in asymptomatic internal carotid artery stenosis. Stroke 2014; 45 (10) 2995-3001
  • 171 Prodan CI, Dale GL. Coated-platelets in ischemic stroke - potential insight into the etiology of stroke subtypes. Int J Stroke 2008; 3 (4) 249-250
  • 172 Prodan CI, Vincent AS, Dale GL. Coated-platelet levels are elevated in patients with transient ischemic attack. Transl Res 2011; 158 (1) 71-75
  • 173 Prodan CI, Stoner JA, Cowan LD, Dale GL. Lower coated-platelet levels are associated with early hemorrhagic transformation in patients with non-lacunar brain infarction. J Thromb Haemost 2010; 8 (6) 1185-1190
  • 174 Prodan CI, Vincent AS, Dale GL. Coated platelet levels correlate with bleed volume in patients with spontaneous intracerebral hemorrhage. Stroke 2010; 41 (6) 1301-1303
  • 175 Prodan CI, Vincent AS, Padmanabhan R, Dale GL. Coated-platelet levels are low in patients with spontaneous intracerebral hemorrhage. Stroke 2009; 40 (7) 2578-2580
  • 176 Frelinger III AL, Grace RF, Gerrits AJ , et al. Platelet function tests, independent of platelet count, are associated with bleeding severity in ITP. Blood 2015; 126 (7) 873-879
  • 177 Linden MD, Frelinger III AL, Barnard MR, Przyklenk K, Furman MI, Michelson AD. Application of flow cytometry to platelet disorders. Semin Thromb Hemost 2004; 30 (5) 501-511
  • 178 Dovlatova N, Lordkipanidzé M, Lowe GC , et al; UK GAPP Study Group. Evaluation of a whole blood remote platelet function test for the diagnosis of mild bleeding disorders. J Thromb Haemost 2014; 12 (5) 660-665
  • 179 Dovlatova N, May JA, Fox SC. Remote platelet function testing—Significant progress towards widespread testing in clinical practice. Platelets 2015; 26 (5) 399-401
  • 180 Connolly-Andersen AM, Sundberg E, Ahlm C , et al. Increased thrombopoiesis and platelet activation in hantavirus-infected patients. J Infect Dis 2015; 212 (7) 1061-1069