Semin Thromb Hemost 2016; 42(03): 242-251
DOI: 10.1055/s-0035-1570079
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

The Role of Platelets in Venous Thromboembolism

Silvia Montoro-García
1   Department of Cardiovascular Risk, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, Campus de los Jerónimos, Guadalupe, Murcia, Spain
,
Marc Schindewolf
2   Division of Vascular Medicine, University Hospital Bern, Swiss Cardiovascular Center, Bern, Switzerland
,
Sophia Stanford
3   Department of Haemophilia, Haemostasis and Thrombosis, North Hampshire NHS Trust, Basingstoke, Hampshire, United Kingdom
,
Ole Halfdan Larsen
4   Department of Clinical Biochemistry, Aarhus University Hospital, Centre for Hemophilia and Thrombosis, Aarhus, Denmark
,
Thomas Thiele
5   Institute for Immunology and Transfusion Medicine, Ernst-Moritz-Arndt-University, Greifswald, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
29. Februar 2016 (online)

Abstract

Multiple factors contribute to the risk of venous thromboembolism (VTE). Platelets have attracted much interest in arterial cardiovascular disease, whereas their role in VTE has received much less attention. Recent evidence suggests that platelets may play a more important role in VTE than previously anticipated. This review discusses the mechanisms that link platelets with venous thrombotic disease and their potential applications as novel risk factors for VTE. In addition, animal studies and randomized clinical trials that highlight the potential effect of antiplatelet therapy in venous thrombosis are evaluated to assess the role of platelets in VTE. The clinical significance of platelets for VTE risk assessment in specific patient cohorts and their role as a suitable therapeutic target for VTE prevention is acknowledged. The role of platelets in VTE is a promising field for future research.

Notes on Contributors

All authors contributed equally as members of the writing group.


 
  • References

  • 1 Martinelli I, De Stefano V, Mannucci PM. Inherited risk factors for venous thromboembolism. Nat Rev Cardiol 2014; 11 (3) 140-156
  • 2 Martinelli I, De Stefano V, Mannucci PM. Reply: Interaction between inherited thrombophilia and HIV infection: fact or fancy?. Nat Rev Cardiol 2014; 11 (6) 321
  • 3 Riva N, Donadini MP, Ageno W. Epidemiology and pathophysiology of venous thromboembolism: similarities with atherothrombosis and the role of inflammation. Thromb Haemost 2015; 113 (6) 1176-1183
  • 4 Simioni P, Tormene D, Spiezia L , et al. Inherited thrombophilia and venous thromboembolism. Semin Thromb Hemost 2006; 32 (7) 700-708
  • 5 Previtali E, Bucciarelli P, Passamonti SM, Martinelli I. Risk factors for venous and arterial thrombosis. Blood Transfus 2011; 9 (2) 120-138
  • 6 Prandoni P, Bilora F, Marchiori A , et al. An association between atherosclerosis and venous thrombosis. N Engl J Med 2003; 348 (15) 1435-1441
  • 7 Sørensen HT, Horvath-Puho E, Pedersen L, Baron JA, Prandoni P. Venous thromboembolism and subsequent hospitalisation due to acute arterial cardiovascular events: a 20-year cohort study. Lancet 2007; 370 (9601) 1773-1779
  • 8 von Beckerath N, Koch W, Mehilli J, Böttiger C, Schömig A, Kastrati A. Glycoprotein Ia gene C807T polymorphism and risk for major adverse cardiac events within the first 30 days after coronary artery stenting. Blood 2000; 95 (11) 3297-3301
  • 9 Dinauer DM, Friedman KD, Hessner MJ. Allelic distribution of the glycoprotein Ia (alpha2-integrin) C807T/G873A dimorphisms among Caucasian venous thrombosis patients and six racial groups. Br J Haematol 1999; 107 (3) 563-565
  • 10 Okumus G, Kiyan E, Arseven O , et al. Platelet glycoprotein Ia 807C/T and 873G/A polymorphisms in patients with venous thromboembolism. Clin Appl Thromb Hemost 2007; 13 (1) 101-103
  • 11 Matsubara Y, Murata M, Maruyama T , et al. Association between diabetic retinopathy and genetic variations in alpha2beta1 integrin, a platelet receptor for collagen. Blood 2000; 95 (5) 1560-1564
  • 12 Dodson PM, Haynes J, Starczynski J , et al. The platelet glycoprotein Ia/IIa gene polymorphism C807T/G873A: a novel risk factor for retinal vein occlusion. Eye (Lond) 2003; 17 (6) 772-777
  • 13 Wagner CL, Mascelli MA, Neblock DS, Weisman HF, Coller BS, Jordan RE. Analysis of GPIIb/IIIa receptor number by quantification of 7E3 binding to human platelets. Blood 1996; 88 (3) 907-914
  • 14 Feng D, Lindpaintner K, Larson MG , et al. Increased platelet aggregability associated with platelet GPIIIa PlA2 polymorphism: the Framingham Offspring Study. Arterioscler Thromb Vasc Biol 1999; 19 (4) 1142-1147
  • 15 Ivanov P, Komsa-Penkova R, Kovacheva K , et al. Impact of thrombophilic genetic factors on pulmonary embolism: early onset and recurrent incidences. Lung 2008; 186 (1) 27-36
  • 16 Jandrot-Perrus M, Lagrue AH, Okuma M, Bon C. Adhesion and activation of human platelets induced by convulxin involve glycoprotein VI and integrin alpha2beta1. J Biol Chem 1997; 272 (43) 27035-27041
  • 17 Best D, Senis YA, Jarvis GE , et al. GPVI levels in platelets: relationship to platelet function at high shear. Blood 2003; 102 (8) 2811-2818
  • 18 Bezemer ID, Bare LA, Doggen CJ , et al. Gene variants associated with deep vein thrombosis. JAMA 2008; 299 (11) 1306-1314
  • 19 El-Galaly TC, Severinsen MT, Overvad K , et al. Single nucleotide polymorphisms and the risk of venous thrombosis: results from a Danish case-cohort study. Br J Haematol 2013; 160 (6) 838-841
  • 20 Trégouët DA, Heath S, Saut N , et al. Common susceptibility alleles are unlikely to contribute as strongly as the FV and ABO loci to VTE risk: results from a GWAS approach. Blood 2009; 113 (21) 5298-5303
  • 21 Antonioli E, Guglielmelli P, Poli G , et al; Myeloproliferative Disorders Research Consortium (MPD-RC). Influence of JAK2V617F allele burden on phenotype in essential thrombocythemia. Haematologica 2008; 93 (1) 41-48
  • 22 Colaizzo D, Amitrano L, Tiscia GL , et al. The JAK2 V617F mutation frequently occurs in patients with portal and mesenteric venous thrombosis. J Thromb Haemost 2007; 5 (1) 55-61
  • 23 Arellano-Rodrigo E, Alvarez-Larrán A, Reverter JC , et al. Platelet turnover, coagulation factors, and soluble markers of platelet and endothelial activation in essential thrombocythemia: relationship with thrombosis occurrence and JAK2 V617F allele burden. Am J Hematol 2009; 84 (2) 102-108
  • 24 Arellano-Rodrigo E, Alvarez-Larrán A, Reverter JC, Villamor N, Colomer D, Cervantes F. Increased platelet and leukocyte activation as contributing mechanisms for thrombosis in essential thrombocythemia and correlation with the JAK2 mutational status. Haematologica 2006; 91 (2) 169-175
  • 25 Michelson AD, Barnard MR, Krueger LA, Valeri CR, Furman MI. Circulating monocyte-platelet aggregates are a more sensitive marker of in vivo platelet activation than platelet surface P-selectin: studies in baboons, human coronary intervention, and human acute myocardial infarction. Circulation 2001; 104 (13) 1533-1537
  • 26 Lu WJ, Lin KC, Huang SY , et al. Role of a Janus kinase 2-dependent signaling pathway in platelet activation. Thromb Res 2014; 133 (6) 1088-1096
  • 27 Dentali F, Squizzato A, Brivio L , et al. JAK2V617F mutation for the early diagnosis of Ph- myeloproliferative neoplasms in patients with venous thromboembolism: a meta-analysis. Blood 2009; 113 (22) 5617-5623
  • 28 Lussana F, Caberlon S, Pagani C, Kamphuisen PW, Büller HR, Cattaneo M. Association of V617F Jak2 mutation with the risk of thrombosis among patients with essential thrombocythaemia or idiopathic myelofibrosis: a systematic review. Thromb Res 2009; 124 (4) 409-417
  • 29 Bick RL. Sticky platelet syndrome: a common cause of unexplained arterial and venous thrombosis. Clin Appl Thromb Hemost 1998; 4 (2) 77-81
  • 30 Kubisz P, Stasko J, Holly P. Sticky platelet syndrome. Semin Thromb Hemost 2013; 39 (6) 674-683
  • 31 Mammen EF. Ten years' experience with the “sticky platelet syndrome”. Clin Appl Thromb Hemost 1995; 1 (1) 66-72
  • 32 Šimonová R, Bartosová L, Chudy P , et al. Nine kindreds of familial sticky platelet syndrome phenotype. Clin Appl Thromb Hemost 2013; 19 (4) 395-401
  • 33 Cosemans JM, Van Kruchten R, Olieslagers S , et al. Potentiating role of Gas6 and Tyro3, Axl and Mer (TAM) receptors in human and murine platelet activation and thrombus stabilization. J Thromb Haemost 2010; 8 (8) 1797-1808
  • 34 Kauskot A, Di Michele M, Loyen S, Freson K, Verhamme P, Hoylaerts MF. A novel mechanism of sustained platelet αIIbβ3 activation via PEAR1. Blood 2012; 119 (17) 4056-4065
  • 35 Sokol J, Biringer K, Skerenova M, Stasko J, Kubisz P, Danko J. Different models of inheritance in selected genes in patients with sticky platelet syndrome and fetal loss. Semin Thromb Hemost 2015; 41 (3) 330-335
  • 36 Piccin A, Murphy WG, Smith OP. Circulating microparticles: pathophysiology and clinical implications. Blood Rev 2007; 21 (3) 157-171
  • 37 Hérault JP, Perrin B, Jongbloet C, Pflieger AM, Bernat A, Herbert JM. Effect of factor Xa inhibitors on the platelet-derived microparticles procoagulant activity in vitro and in vivo in rats. Thromb Haemost 2000; 84 (4) 668-674
  • 38 Chirinos JA, Heresi GA, Velasquez H , et al. Elevation of endothelial microparticles, platelets, and leukocyte activation in patients with venous thromboembolism. J Am Coll Cardiol 2005; 45 (9) 1467-1471
  • 39 Garcia Rodriguez P, Eikenboom HC, Tesselaar ME , et al. Plasma levels of microparticle-associated tissue factor activity in patients with clinically suspected pulmonary embolism. Thromb Res 2010; 126 (4) 345-349
  • 40 Ay C, Freyssinet JM, Sailer T, Vormittag R, Pabinger I. Circulating procoagulant microparticles in patients with venous thromboembolism. Thromb Res 2009; 123 (5) 724-726
  • 41 Zwicker JI, Liebman HA, Neuberg D , et al. Tumor-derived tissue factor-bearing microparticles are associated with venous thromboembolic events in malignancy. Clin Cancer Res 2009; 15 (22) 6830-6840
  • 42 Tesselaar ME, Romijn FP, van der Linden IK, Bertina RM, Osanto S. Microparticle-associated tissue factor activity in cancer patients with and without thrombosis. J Thromb Haemost 2009; 7 (8) 1421-1423
  • 43 Manly DA, Wang J, Glover SL , et al. Increased microparticle tissue factor activity in cancer patients with venous thromboembolism. Thromb Res 2010; 125 (6) 511-512
  • 44 Campello E, Spiezia L, Radu CM , et al. Endothelial, platelet, and tissue factor-bearing microparticles in cancer patients with and without venous thromboembolism. Thromb Res 2011; 127 (5) 473-477
  • 45 Tesselaar ME, Romijn FP, Van Der Linden IK, Prins FA, Bertina RM, Osanto S. Microparticle-associated tissue factor activity: a link between cancer and thrombosis?. J Thromb Haemost 2007; 5 (3) 520-527
  • 46 van Doormaal F, Kleinjan A, Berckmans RJ , et al. Coagulation activation and microparticle-associated coagulant activity in cancer patients. An exploratory prospective study. Thromb Haemost 2012; 108 (1) 160-165
  • 47 Ye R, Ye C, Huang Y, Liu L, Wang S. Circulating tissue factor positive microparticles in patients with acute recurrent deep venous thrombosis. Thromb Res 2012; 130 (2) 253-258
  • 48 Lacroix R, Robert S, Poncelet P, Kasthuri RS, Key NS, Dignat-George F ; ISTH SSC Workshop. Standardization of platelet-derived microparticle enumeration by flow cytometry with calibrated beads: results of the International Society on Thrombosis and Haemostasis SSC Collaborative workshop. J Thromb Haemost 2010; 8 (11) 2571-2574
  • 49 Weber M, Gerdsen F, Gutensohn K, Schoder V, Eifrig B, Hossfeld DK. Enhanced platelet aggregation with TRAP-6 and collagen in platelet aggregometry in patients with venous thromboembolism. Thromb Res 2002; 107 (6) 325-328
  • 50 Yagmur E, Frank RD, Neulen J, Floege J, Mühlfeld AS. Platelet hyperaggregability is highly prevalent in patients with chronic kidney disease: an underestimated risk indicator of thromboembolic events. Clin Appl Thromb Hemost 2015; 21 (2) 132-138
  • 51 Ferreiro JL, Gómez-Hospital JA, Angiolillo DJ. Platelet abnormalities in diabetes mellitus. Diab Vasc Dis Res 2010; 7 (4) 251-259
  • 52 Vieira de Abreu A, Rondina MT, Weyrich AS, Zimmerman GA. Inflammation. In: Michelson AD, ed. Platelets. 3rd ed. Oxford: Elsevier Inc.; 2013: 733-766
  • 53 Hayes C, Kitahara S, Tcherniantchouk O. Decreased threshold of aggregation to low-dose epinephrine is evidence of platelet hyperaggregability in patients with thrombosis. Hematol Rep 2014; 6 (3) 5326
  • 54 Yee DL, Sun CW, Bergeron AL, Dong JF, Bray PF. Aggregometry detects platelet hyperreactivity in healthy individuals. Blood 2005; 106 (8) 2723-2729
  • 55 Yee DL, Bergeron AL, Sun CW, Dong JF, Bray PF. Platelet hyperreactivity generalizes to multiple forms of stimulation. J Thromb Haemost 2006; 4 (9) 2043-2050
  • 56 Berger JS, Becker RC, Kuhn C, Helms MJ, Ortel TL, Williams R. Hyperreactive platelet phenotypes: relationship to altered serotonin transporter number, transport kinetics and intrinsic response to adrenergic co-stimulation. Thromb Haemost 2013; 109 (1) 85-92
  • 57 Fijnheer R, Frijns CJ, Korteweg J , et al. The origin of P-selectin as a circulating plasma protein. Thromb Haemost 1997; 77 (6) 1081-1085
  • 58 Palabrica T, Lobb R, Furie BC , et al. Leukocyte accumulation promoting fibrin deposition is mediated in vivo by P-selectin on adherent platelets. Nature 1992; 359 (6398) 848-851
  • 59 McEver RP. Adhesive interactions of leukocytes, platelets, and the vessel wall during hemostasis and inflammation. Thromb Haemost 2001; 86 (3) 746-756
  • 60 Diacovo TG, Roth SJ, Buccola JM, Bainton DF, Springer TA. Neutrophil rolling, arrest, and transmigration across activated, surface-adherent platelets via sequential action of P-selectin and the beta 2-integrin CD11b/CD18. Blood 1996; 88 (1) 146-157
  • 61 Celi A, Pellegrini G, Lorenzet R , et al. P-selectin induces the expression of tissue factor on monocytes. Proc Natl Acad Sci U S A 1994; 91 (19) 8767-8771
  • 62 Hrachovinová I, Cambien B, Hafezi-Moghadam A , et al. Interaction of P-selectin and PSGL-1 generates microparticles that correct hemostasis in a mouse model of hemophilia A. Nat Med 2003; 9 (8) 1020-1025
  • 63 Rauch U, Bonderman D, Bohrmann B , et al. Transfer of tissue factor from leukocytes to platelets is mediated by CD15 and tissue factor. Blood 2000; 96 (1) 170-175
  • 64 Blann AD, Noteboom WM, Rosendaal FR. Increased soluble P-selectin levels following deep venous thrombosis: cause or effect?. Br J Haematol 2000; 108 (1) 191-193
  • 65 Gremmel T, Ay C, Seidinger D, Pabinger I, Panzer S, Koppensteiner R. Soluble p-selectin, D-dimer, and high-sensitivity C-reactive protein after acute deep vein thrombosis of the lower limb. J Vasc Surg 2011; 54 (6, Suppl): 48S-55S
  • 66 Ay C, Jungbauer LV, Sailer T , et al. High concentrations of soluble P-selectin are associated with risk of venous thromboembolism and the P-selectin Thr715 variant. Clin Chem 2007; 53 (7) 1235-1243
  • 67 Rectenwald JE, Myers Jr DD, Hawley AE , et al. D-dimer, P-selectin, and microparticles: novel markers to predict deep venous thrombosis. A pilot study. Thromb Haemost 2005; 94 (6) 1312-1317
  • 68 Yang LC, Wang CJ, Lee TH , et al. Early diagnosis of deep vein thrombosis in female patients who undergo total knee arthroplasty with measurement of P-selectin activation. J Vasc Surg 2002; 35 (4) 707-712
  • 69 Ramacciotti E, Blackburn S, Hawley AE , et al. Evaluation of soluble P-selectin as a marker for the diagnosis of deep venous thrombosis. Clin Appl Thromb Hemost 2011; 17 (4) 425-431
  • 70 Ay C, Simanek R, Vormittag R , et al. High plasma levels of soluble P-selectin are predictive of venous thromboembolism in cancer patients: results from the Vienna Cancer and Thrombosis Study (CATS). Blood 2008; 112 (7) 2703-2708
  • 71 Ay C, Dunkler D, Marosi C , et al. Prediction of venous thromboembolism in cancer patients. Blood 2010; 116 (24) 5377-5382
  • 72 Ahlbrecht J, Dickmann B, Ay C , et al. Tumor grade is associated with venous thromboembolism in patients with cancer: results from the Vienna Cancer and Thrombosis Study. J Clin Oncol 2012; 30 (31) 3870-3875
  • 73 Dickmann B, Ahlbrecht J, Ay C , et al. Regional lymph node metastases are a strong risk factor for venous thromboembolism: results from the Vienna Cancer and Thrombosis Study. Haematologica 2013; 98 (8) 1309-1314
  • 74 Thiele T, Selleng K, Selleng S, Greinacher A, Bakchoul T. Thrombocytopenia in the intensive care unit-diagnostic approach and management. Semin Hematol 2013; 50 (3) 239-250
  • 75 Bath PM, Butterworth RJ. Platelet size: measurement, physiology and vascular disease. Blood Coagul Fibrinolysis 1996; 7 (2) 157-161
  • 76 Braekkan SK, Mathiesen EB, Njølstad I, Wilsgaard T, Størmer J, Hansen JB. Mean platelet volume is a risk factor for venous thromboembolism: the Tromsø Study, Tromsø, Norway. J Thromb Haemost 2010; 8 (1) 157-162
  • 77 Rupa-Matysek J, Gil L, Wojtasińska E, Ciepłuch K, Lewandowska M, Komarnicki M. The relationship between mean platelet volume and thrombosis recurrence in patients diagnosed with antiphospholipid syndrome. Rheumatol Int 2014; 34 (11) 1599-1605
  • 78 Kostrubiec M, Łabyk A, Pedowska-Włoszek J , et al. Mean platelet volume predicts early death in acute pulmonary embolism. Heart 2010; 96 (6) 460-465
  • 79 Riedl J, Kaider A, Reitter EM , et al. Association of mean platelet volume with risk of venous thromboembolism and mortality in patients with cancer. Results from the Vienna Cancer and Thrombosis Study (CATS). Thromb Haemost 2014; 111 (4) 670-678
  • 80 Ferroni P, Guadagni F, Riondino S , et al. Evaluation of mean platelet volume as a predictive marker for cancer-associated venous thromboembolism during chemotherapy. Haematologica 2014; 99 (10) 1638-1644
  • 81 Mutlu H, Artis TA, Erden A, Akca Z. Alteration in mean platelet volume and platicrit values in patients with cancer that developed thrombosis. Clin Appl Thromb Hemost 2013; 19 (3) 331-333
  • 82 Ibrahim H, Schutt RC, Hannawi B, DeLao T, Barker CM, Kleiman NS. Association of immature platelets with adverse cardiovascular outcomes. J Am Coll Cardiol 2014; 64 (20) 2122-2129
  • 83 Buss DH, Stuart JJ, Lipscomb GE. The incidence of thrombotic and hemorrhagic disorders in association with extreme thrombocytosis: an analysis of 129 cases. Am J Hematol 1985; 20 (4) 365-372
  • 84 Tsai AW, Cushman M, Rosamond WD, Heckbert SR, Polak JF, Folsom AR. Cardiovascular risk factors and venous thromboembolism incidence: the longitudinal investigation of thromboembolism etiology. Arch Intern Med 2002; 162 (10) 1182-1189
  • 85 van der Bom JG, Heckbert SR, Lumley T , et al. Platelet count and the risk for thrombosis and death in the elderly. J Thromb Haemost 2009; 7 (3) 399-405
  • 86 Zakai NA, Wright J, Cushman M. Risk factors for venous thrombosis in medical inpatients: validation of a thrombosis risk score. J Thromb Haemost 2004; 2 (12) 2156-2161
  • 87 Khorana AA, Francis CW, Culakova E, Lyman GH. Risk factors for chemotherapy-associated venous thromboembolism in a prospective observational study. Cancer 2005; 104 (12) 2822-2829
  • 88 Mandalà M, Barni S, Prins M , et al. Acquired and inherited risk factors for developing venous thromboembolism in cancer patients receiving adjuvant chemotherapy: a prospective trial. Ann Oncol 2010; 21 (4) 871-876
  • 89 Simanek R, Vormittag R, Ay C , et al. High platelet count associated with venous thromboembolism in cancer patients: results from the Vienna Cancer and Thrombosis Study (CATS). J Thromb Haemost 2010; 8 (1) 114-120
  • 90 Khorana AA, Kuderer NM, Culakova E, Lyman GH, Francis CW. Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood 2008; 111 (10) 4902-4907
  • 91 Jensvoll H, Blix K, Brækkan SK, Hansen JB. Platelet count measured prior to cancer development is a risk factor for future symptomatic venous thromboembolism: the Tromsø Study. PLoS ONE 2014; 9 (3) e92011
  • 92 Mezouar S, Darbousset R, Dignat-George F, Panicot-Dubois L, Dubois C. Inhibition of platelet activation prevents the P-selectin and integrin-dependent accumulation of cancer cell microparticles and reduces tumor growth and metastasis in vivo. Int J Cancer 2015; 136 (2) 462-475
  • 93 Wang YX, Vincelette J, da Cunha V , et al. A novel P2Y(12) adenosine diphosphate receptor antagonist that inhibits platelet aggregation and thrombus formation in rat and dog models. Thromb Haemost 2007; 97 (5) 847-855
  • 94 Bernat A, Herbert JM. Effect of various drugs on adriamycin-enhanced venous thrombosis in the rat: importance of PAF. Thromb Res 1994; 75 (1) 91-97
  • 95 Hérault JP, Dol F, Gaich C, Bernat A, Herbert JM. Effect of clopidogrel on thrombin generation in platelet-rich plasma in the rat. Thromb Haemost 1999; 81 (6) 957-960
  • 96 Herbert JM, Bernat A, Sainte-Marie M, Dol F, Rinaldi M. Potentiating effect of clopidogrel and SR 46349, a novel 5-HT2 antagonist, on streptokinase-induced thrombolysis in the rabbit. Thromb Haemost 1993; 69 (3) 268-271
  • 97 Imbault P, Doutremepuich F, Aguejouf O, Doutremepuich C. Antithrombotic effects of aspirin and LMWH in a laser-induced model of arterials and venous thrombosis. Thromb Res 1996; 82 (6) 469-478
  • 98 Moore MG, Deschler DG. Clopidogrel (Plavix) reduces the rate of thrombosis in the rat tuck model for microvenous anastomosis. Otolaryngol Head Neck Surg 2007; 136 (4) 573-576
  • 99 Arroyo JG, Dastgheib K, Hatchell DL. Antithrombotic effect of ticlopidine in an experimental model of retinal vein occlusion. Jpn J Ophthalmol 2001; 45 (4) 359-362
  • 100 Savi P, Bernat A, Dumas A, Aït-Chek L, Herbert JM. Effect of aspirin and clopidogrel on platelet-dependent tissue factor expression in endothelial cells. Thromb Res 1994; 73 (2) 117-124
  • 101 Bird JE, Wang X, Smith PL, Barbera F, Huang C, Schumacher WA. A platelet target for venous thrombosis? P2Y1 deletion or antagonism protects mice from vena cava thrombosis. J Thromb Thrombolysis 2012; 34 (2) 199-207
  • 102 Lenain N, Freund M, Léon C, Cazenave JP, Gachet C. Inhibition of localized thrombosis in P2Y1-deficient mice and rodents treated with MRS2179, a P2Y1 receptor antagonist. J Thromb Haemost 2003; 1 (6) 1144-1149
  • 103 Harsha WJ, Kau RL, Kim N, Hayden RE. Effects of antithrombogenic agents on microvenous anastomoses in a rat model. Arch Otolaryngol Head Neck Surg 2011; 137 (2) 170-174
  • 104 Depin JC, Vigié A, Chavernac G, Rousselot C, Lardy C, Guerrier D. Pharmacodynamics and antithrombotic effects after intravenous administration of the new thromboxane A2 receptor antagonist sodium 4-[[1-[[[(4-chlorophenyl)sulfonyl]amino]methyl]cyclopentyl] methyl]benzeneacetate. Arzneimittelforschung 1994; 44 (11) 1203-1207
  • 105 Molina V, Arruzazabala ML, Carbajal D, Más R. D-003, a potential antithrombotic compound isolated from sugar cane wax with effects on arachidonic acid metabolites. Prostaglandins Leukot Essent Fatty Acids 2002; 67 (1) 19-24
  • 106 Moritani Y, Sato K, Shigenaga T , et al. Pharmacological properties of YM-57029, a novel platelet glycoprotein IIb/IIIa antagonist. Eur J Pharmacol 2002; 439 (1–3) 43-52
  • 107 Yun-Choi HS, Pyo MK, Park KM, Chang KC, Lee DH. Antithrombotic effects of YS-49 and YS-51–1-naphthylmethyl analogs of higenamine. Thromb Res 2001; 104 (4) 249-255
  • 108 Kim YS, Pyo MK, Park KM , et al. Antiplatelet and antithrombotic effects of a combination of ticlopidine and ginkgo biloba ext (EGb 761). Thromb Res 1998; 91 (1) 33-38
  • 109 Collaborative overview of randomised trials of antiplatelet therapy—III: Reduction in venous thrombosis and pulmonary embolism by antiplatelet prophylaxis among surgical and medical patients. Antiplatelet Trialists' Collaboration. BMJ 1994; 308 (6923) 235-246
  • 110 Brown GA. Venous thromboembolism prophylaxis after major orthopaedic surgery: a pooled analysis of randomized controlled trials. J Arthroplasty 2009; 24 (6, Suppl): 77-83
  • 111 Gent M, Hirsh J, Ginsberg JS , et al. Low-molecular-weight heparinoid orgaran is more effective than aspirin in the prevention of venous thromboembolism after surgery for hip fracture. Circulation 1996; 93 (1) 80-84
  • 112 Anderson DR, Dunbar MJ, Bohm ER , et al. Aspirin versus low-molecular-weight heparin for extended venous thromboembolism prophylaxis after total hip arthroplasty: a randomized trial. Ann Intern Med 2013; 158 (11) 800-806
  • 113 Prevention of pulmonary embolism and deep vein thrombosis with low dose aspirin: Pulmonary Embolism Prevention (PEP) trial. Lancet 2000; 355 (9212) 1295-1302
  • 114 Monreal M, Lafoz E, Roca J , et al. Platelet count, antiplatelet therapy and pulmonary embolism—a prospective study in patients with hip surgery. Thromb Haemost 1995; 73 (3) 380-385
  • 115 Belcaro G, Errichi BM, De Simone P. Prevention of recurrent deep venous thrombosis with indobufen. A 3-year follow-up study using color duplex scanning. Angiology 1993; 44 (4) 328-331
  • 116 Belcaro G, Laurora G, Cesarone MR, De Sanctis MT. Prophylaxis of recurrent deep venous thrombosis. A randomized, prospective study using indobufen and graduated elastic compression stockings. Angiology 1993; 44 (9) 695-699
  • 117 Becattini C, Agnelli G, Schenone A , et al; WARFASA Investigators. Aspirin for preventing the recurrence of venous thromboembolism. N Engl J Med 2012; 366 (21) 1959-1967
  • 118 Brighton TA, Eikelboom JW, Mann K , et al; ASPIRE Investigators. Low-dose aspirin for preventing recurrent venous thromboembolism. N Engl J Med 2012; 367 (21) 1979-1987
  • 119 Simes J, Becattini C, Agnelli G , et al; INSPIRE Study Investigators (International Collaboration of Aspirin Trials for Recurrent Venous Thromboembolism). Aspirin for the prevention of recurrent venous thromboembolism: the INSPIRE collaboration. Circulation 2014; 130 (13) 1062-1071
  • 120 Glynn RJ, Ridker PM, Goldhaber SZ, Buring JE. Effect of low-dose aspirin on the occurrence of venous thromboembolism: a randomized trial. Ann Intern Med 2007; 147 (8) 525-533
  • 121 Palumbo A, Cavo M, Bringhen S , et al. Aspirin, warfarin, or enoxaparin thromboprophylaxis in patients with multiple myeloma treated with thalidomide: a phase III, open-label, randomized trial. J Clin Oncol 2011; 29 (8) 986-993
  • 122 Larocca A, Cavallo F, Bringhen S , et al. Aspirin or enoxaparin thromboprophylaxis for patients with newly diagnosed multiple myeloma treated with lenalidomide. Blood 2012; 119 (4) 933-939 , quiz 1093
  • 123 Landolfi R, Marchioli R, Kutti J , et al; European Collaboration on Low-Dose Aspirin in Polycythemia Vera Investigators. Efficacy and safety of low-dose aspirin in polycythemia vera. N Engl J Med 2004; 350 (2) 114-124
  • 124 Antonopoulos CN, Sfyroeras GS, Kakisis JD, Moulakakis KG, Liapis CD. The role of soluble P selectin in the diagnosis of venous thromboembolism. Thromb Res 2014; 133 (1) 17-24