J Pediatr Intensive Care 2016; 05(03): 101-107
DOI: 10.1055/s-0035-1569997
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Computerized Decision Support System for Traumatic Brain Injury Management

Sina Fartoumi
1   Polystim Neurotechnology Laboratory, Department of Electrical Engineering, Polytechnique Montreal, Quebec, Canada
2   Pediatric Intensive Care Unit, CHU Sainte-Justine, Université de Montréal, Quebec, Canada
,
Guillaume Emeriaud
2   Pediatric Intensive Care Unit, CHU Sainte-Justine, Université de Montréal, Quebec, Canada
,
Nadia Roumeliotis
2   Pediatric Intensive Care Unit, CHU Sainte-Justine, Université de Montréal, Quebec, Canada
,
David Brossier
2   Pediatric Intensive Care Unit, CHU Sainte-Justine, Université de Montréal, Quebec, Canada
,
Mohamad Sawan
1   Polystim Neurotechnology Laboratory, Department of Electrical Engineering, Polytechnique Montreal, Quebec, Canada
› Author Affiliations
Further Information

Publication History

26 August 2015

09 October 2015

Publication Date:
07 December 2015 (online)

Abstract

Mortality and morbidity related to traumatic brain injury (TBI) present a major health care burden. Patients with severe TBI must be managed rapidly and efficiently to minimize secondary brain injury potentially leading to permanent sequelae. This is especially important in young patients, whose brain is still in development, making them particularly susceptible to secondary insults. The complexity of both brain injury pathophysiology and the intensive care unit environment makes the management of these patients challenging, with a risk of delayed response and/or patient instability contributing to worsened outcome. Computerized assistance in TBI appears likely to improve patient management, by helping clinicians quickly analyze and respond to ongoing clinical changes and optimizing patient status by guiding management. Currently, computerized decision support systems (CDSSs) do not feature continuous medical assistance with individualized treatment plans. This review presents new developments in CDSSs specialized in TBI. We also present the framework for future CDSSs needed to improve TBI management in real time, taking into account individual patient characteristics.

 
  • References

  • 1 Kreipke CW, Rafols JA. Historical perspectives in understanding traumatic brain injury and in situating disruption in CBF in the pathotrajectory of head trauma. In: Kreipke CW, Rafols JA, eds., Cerebral Blood Flow Metabolism, and Head Trauma. Springer; 2014: 1-27
  • 2 Rosenfeld JV, Maas AI, Bragge P, Morganti-Kossmann MC, Manley GT, Gruen RL. Early management of severe traumatic brain injury. Lancet 2012; 380 (9847) 1088-1098
  • 3 Pineda JA, Leonard JR, Mazotas IG , et al. Effect of implementation of a paediatric neurocritical care programme on outcomes after severe traumatic brain injury: a retrospective cohort study. Lancet Neurol 2013; 12 (1) 45-52
  • 4 Emeriaud G, Pettersen G, Ozanne B. Pediatric traumatic brain injury: an update. Curr Opin Anaesthesiol 2011; 24 (3) 307-313
  • 5 Figaji AA, Zwane E, Thompson C , et al. Brain tissue oxygen tension monitoring in pediatric severe traumatic brain injury. Part 2: Relationship with clinical, physiological, and treatment factors. Childs Nerv Syst 2009; 25 (10) 1335-1343
  • 6 Carre E, Ogier M, Boret H, Montcriol A, Bourdon L, Jean-Jacques R. Metabolic crisis in severely head-injured patients: is ischemia just the tip of the iceberg?. Front Neurol 2013; 4: 146
  • 7 Williams CN, Bratton SL, Hirshberg EL. Computerized decision support in adult and pediatric critical care. World J Crit Care Med 2013; 2 (4) 21-28
  • 8 Miller GA. The magical number seven plus or minus two: some limits on our capacity for processing information. Psychol Rev 1956; 63 (2) 81-97
  • 9 Tehrani FT, Roum JH. Intelligent decision support systems for mechanical ventilation. Artif Intell Med 2008; 44 (3) 171-182
  • 10 Woods DD, Patterson ES, Roth EM. Can we ever escape from data overload? A cognitive systems diagnosis. Cogn Technol Work 2002; 4 (1) 22-36
  • 11 Woods D. The cognitive engineering of problem representations. In: Weir G, Alty J, eds., Human-Computer Interaction and Complex Systems. London: Academic Press; 1991: 169-188
  • 12 Koch SH, Staggers N, Weir C, Agutter J, Liu D, Westenskow DR. Integrated information displays for ICU nurses: field observations, display design, and display evaluation. Proc Hum Fact Ergon Soc Annu Meet 2010; 54 (12) 932-936
  • 13 Elson RB, Connelly DP. The impact of anticipatory patient data displays on physician decision making: a pilot study. Proc AMIA Annu Fall Symp 1997; 233-237
  • 14 Balas AE. Interactive computer graphics support of medical decision-making, 1992. Available at: http://content.lib.utah.edu/cdm/ref/collection/etd1/id/553 . Accessed June 1, 2015
  • 15 Plaisant C, Milash B, Rose A, Widoff S, Shneiderman B. LifeLines: visualizing personal histories. ACM CHI Proc 1996; 1996: 221-227
  • 16 Zhang J, Norman DA. Representations in distributed cognitive tasks. Cogn Sci 1994; 18 (1) 87-122
  • 17 Roth EM, Patterson ES, Mumaw RJ, Wiley J. Cognitive engineering: issues in user-centered system design. In: Encyclopedia of Software Engineering. New York: Wiley; 2002: 163-179
  • 18 Tufte ER. Envisioning Information. Cheshire Graphic Press; 1990
  • 19 Tufte ER. The Visual Display of Quantitative Information. Cheshire: Graphics Press; 1983
  • 20 Tufte ER. Visual Explanations: Images and Quantities, Evidence and Narrative. Cheshire: Graphics Press; 1997
  • 21 Woods DD. Visual momentum: a concept to improve the cognitive coupling of person and computer. Int J Man Mach Stud 1984; 21 (3) 229-244
  • 22 Zhang J. Human-centered computing in health information systems. Part 1: analysis and design. J Biomed Inform 2005; 38 (1) 1-3
  • 23 Ordóñez P, Desjardins M, Lombardi M, Lehmann CU, Fackler J. An animated multivariate visualization for physiological and clinical data in the ICU. Proc ACM SIGHIT 2010; 2010: 7111-7114
  • 24 Signorini DF, Piper IR, Jones PA, Howells TP. Importance of textual data in multimodality monitoring. Crit Care Med 1997; 25 (12) 2048-2050
  • 25 Chou D, Sengupta S. Infrastructure and security. In: Payne T, ed. Practical Guide to Clinical Computing Systems: Design, Operations, and Infrastructure. United States: Academic Press; 2008: 37-78
  • 26 Piper I, Citerio G, Chambers I , et al; BrainIT Group. The BrainIT group: concept and core dataset definition. Acta Neurochir (Wien) 2003; 145 (8) 615-628 , discussion 628–629
  • 27 Steyerberg EW, Mushkudiani N, Perel P , et al. Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics. PLoS Med 2008; 5 (8) e165 , discussion e165
  • 28 Buchanann GB, Shortliffe HS. Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project. Addison-Wesley; 1984
  • 29 Kamaleswaran R, McGregor C, Percival J. Service oriented architecture for the integration of clinical and physiological data for real-time event stream processing. Conf Proc IEEE Eng Med Biol Soc 2009; 2009: 1667-1670
  • 30 Stylianides N, Dikaiakos MD, Gjermundrød H, Panayi G, Kyprianou T. Intensive care window: real-time monitoring and analysis in the intensive care environment. IEEE Trans Inf Technol Biomed 2011; 15 (1) 26-32
  • 31 Imhoff M, Kuhls S. Alarm algorithms in critical care monitoring. Anesth Analg 2006; 102 (5) 1525-1537
  • 32 Schmidt JM, De Georgia M ; Participants in the International Multidisciplinary Consensus Conference on Multimodality Monitoring. Multimodality monitoring: informatics, integration data display and analysis. Neurocrit Care 2014; 21 (2) (Suppl. 02) S229-S238
  • 33 Brady KM, Shaffner DH, Lee JK , et al. Continuous monitoring of cerebrovascular pressure reactivity after traumatic brain injury in children. Pediatrics 2009; 124 (6) e1205-e1212
  • 34 Aries MJ, Czosnyka M, Budohoski KP , et al. Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012; 40 (8) 2456-2463
  • 35 Kirkness CJ, Burr RL, Mitchell PH. Intracranial pressure variability and long-term outcome following traumatic brain injury. Acta Neurochir Suppl (Wien) 2008; 102: 105-108
  • 36 Hornero R, Aboy M, Abásolo D, McNames J, Goldstein B. Interpretation of approximate entropy: analysis of intracranial pressure approximate entropy during acute intracranial hypertension. IEEE Trans Biomed Eng 2005; 52 (10) 1671-1680
  • 37 Wilson JA, Shutter LA, Hartings JA. COSBID-M3: a platform for multimodal monitoring, data collection, and research in neurocritical care. Acta Neurochir Suppl (Wien) 2013; 115: 67-74
  • 38 Feng M, Zhang Z, Zhang F , et al. iSyNCC: an intelligent system for patient monitoring & clinical decision support in neuro-critical-care. Conf Proc IEEE Eng Med Biol Soc 2011; 2011: 6426-6429
  • 39 Smielewski P, Lavinio A, Timofeev I , et al. ICM+, a flexible platform for investigations of cerebrospinal dynamics in clinical practice. Acta Neurochir Suppl (Wien) 2008; 102: 145-151
  • 40 Gomez H, Camacho J, Yelicich B, Moraes L, Biestro A, Puppo C. Development of a multimodal monitoring platform for medical research. Conf Proc IEEE Eng Med Biol Soc 2010; 2010: 2358-2361
  • 41 Dora CS, Sarkar M, Sundaresh S , et al. Building decision support systems for treating severe head injuries. IEEE Int Sys Man Cyern Conf 2001; 5: 2952-2957
  • 42 Wu F, Williams M, Kazanzides P, Brady K, Fackler J. A modular clinical decision support system clinical prototype extensible into multiple clinical settings. Int Conf Pervasive Comput Technol Healthc 2009; 2009: 1-4
  • 43 Güler I, Tunca A, Gülbandilar E. Detection of traumatic brain injuries using fuzzy logic algorithm. Expert Syst Appl 2008; 34 (2) 1312-1317
  • 44 Chong SL, Liu N, Barbier S, Ong MEH. Predictive modeling in pediatric traumatic brain injury using machine learning. BMC Med Res Methodol 2015; 15 (1) 22
  • 45 Nikiforidis GC, Sakellaropoulos GC. Expert system support using Bayesian belief networks in the prognosis of head-injured patients of the ICU. Med Inform (Lond) 1998; 23 (1) 1-18
  • 46 Ji SY, Huynh T, Najarian K. An intelligent method for computer-aided trauma decision making system. Proc ACM-SE 2007; 2007: 198-202
  • 47 Awarded M. $3 Million to Develop “Smart Neuro ICU” Medical Technology, 2014. Available at: https://www.moberg.com/newsevents/news/2014-news/187-moberg-awarded-3-million-to-develop-smart-neuro-icu-medical-technology . Accessed June 1, 2015
  • 48 Tenovuo O, Menon D, Katila A, Coles J, Frantzen J, Outtrim J. TBicare software as a clinical aid in brain injury medicine. J Neurotrauma 2013; 30 (15) A87-A87
  • 49 Hudson DL, Cohen ME. Fuzzy logic in medical expert systems. IEEE Eng Med Biol Mag 1994; 13 (5) 693-698
  • 50 Bates JH, Young MP. Applying fuzzy logic to medical decision making in the intensive care unit. Am J Respir Crit Care Med 2003; 167 (7) 948-952
  • 51 John RI, Innocent PR. Modeling uncertainty in clinical diagnosis using fuzzy logic. IEEE Trans Syst Man Cybern B Cybern 2005; 35 (6) 1340-1350
  • 52 Godil SS, Shamim MS, Enam SA, Qidwai U. Fuzzy logic: A “simple” solution for complexities in neurosciences?. Surg Neurol Int 2011; 2: 24
  • 53 Jacob SG, Ramani RG. Data mining in clinical data sets: a review. IJAIS J 2012; 4 (6) 15-26
  • 54 Baumgartner B, Rödel K, Knoll A. A data mining approach to reduce the false alarm rate of patient monitors. Conf Proc IEEE Eng Med Biol Soc 2012; 2012: 5935-5938
  • 55 Cheng CW, Chanani N, Venugopalan J, Maher K, Wang MD. icuARM—an ICU clinical decision support system using association rule mining. IEEE J Transl Eng Health Med 2013; 1: 4400110
  • 56 Zhang Y, Fong S, Fiaidhi J, Mohammed S. Real-time clinical decision support system with data stream mining. J Biomed Biotechnol 2012; 2012: 580186
  • 57 Zhang F, Feng M, Pan SJ , et al. Artificial neural network based intracranial pressure mean forecast algorithm for medical decision support. Conf Proc IEEE Eng Med Biol Soc 2011; 2011: 7111-7114
  • 58 Hamilton R, Xu P, Asgari S , et al. Forecasting intracranial pressure elevation using pulse waveform morphology. Conf Proc IEEE Eng Med Biol Soc 2009; 2009: 4331-4334
  • 59 Sow D, Biem A, Sun J, Hu J, Ebadollahi S. Real-time prognosis of ICU physiological data streams. Conf Proc IEEE Eng Med Biol Soc 2010; 2010: 6785-6788