Semin Musculoskelet Radiol 2015; 19(05): 438-445
DOI: 10.1055/s-0035-1569252
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Dual-Energy CT: Basic Principles, Technical Approaches, and Applications in Musculoskeletal Imaging (Part 2)

Patrick Omoumi
1   Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
,
Francis R. Verdun*
2   Institute of Radiation Physics, Lausanne University Hospital, Lausanne, Switzerland
,
Roman Guggenberger
3   Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
,
Gustav Andreisek
3   Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
,
Fabio Becce*
1   Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
› Author Affiliations
Further Information

Publication History

Publication Date:
22 December 2015 (online)

Abstract

In recent years, technological advances have allowed manufacturers to implement dual-energy computed tomography (DECT) on clinical scanners. With its unique ability to differentiate basis materials by their atomic number, DECT has opened new perspectives in imaging. DECT has been successfully used in musculoskeletal imaging with applications ranging from detection, characterization, and quantification of crystal and iron deposits, to simulation of noncalcium (improving the visualization of bone marrow lesions) or noniodine images. Furthermore, the data acquired with DECT can be postprocessed to generate monoenergetic images of varying kiloelectron volts, providing new methods for image contrast optimization as well as metal artifact reduction. The first part of this article reviews the basic principles and technical aspects of DECT including radiation dose considerations. The second part focuses on applications of DECT to musculoskeletal imaging including gout and other crystal-induced arthropathies, virtual noncalcium images for the study of bone marrow lesions, the study of collagenous structures, applications in computed tomography arthrography, as well as the detection of hemosiderin and metal particles.

* F.R. Verdun and F. Becce contributed equally to this work.


 
  • References

  • 1 Huppertz A, Hermann K-GA, Diekhoff T, Wagner M, Hamm B, Schmidt WA. Systemic staging for urate crystal deposits with dual-energy CT and ultrasound in patients with suspected gout. Rheumatol Int 2014; 34 (6) 763-771
  • 2 Gruber M, Bodner G, Rath E, Supp G, Weber M, Schueller-Weidekamm C. Dual-energy computed tomography compared with ultrasound in the diagnosis of gout. Rheumatology (Oxford) 2014; 53 (1) 173-179
  • 3 Choi HK, Burns LC, Shojania K , et al. Dual energy CT in gout: a prospective validation study. Ann Rheum Dis 2012; 71 (9) 1466-1471
  • 4 Choi HK, Al-Arfaj AM, Eftekhari A , et al. Dual energy computed tomography in tophaceous gout. Ann Rheum Dis 2009; 68 (10) 1609-1612
  • 5 Glazebrook KN, Guimarães LS, Murthy NS , et al. Identification of intraarticular and periarticular uric acid crystals with dual-energy CT: initial evaluation. Radiology 2011; 261 (2) 516-524
  • 6 Bongartz T, Glazebrook KN, Kavros SJ , et al. Dual-energy CT for the diagnosis of gout: an accuracy and diagnostic yield study. Ann Rheum Dis 2015; 74 (6) 1072-1077
  • 7 Melzer R, Pauli C, Treumann T, Krauss B. Gout tophus detection-a comparison of dual-energy CT (DECT) and histology. Semin Arthritis Rheum 2014; 43 (5) 662-665
  • 8 McQueen FMF, Doyle AJ, Reeves Q, Gamble GD, Dalbeth N. DECT urate deposits: now you see them, now you don't. Ann Rheum Dis 2013; 72 (3) 458-459
  • 9 Mallinson PI, Coupal T, Reisinger C , et al. Artifacts in dual-energy CT gout protocol: a review of 50 suspected cases with an artifact identification guide. AJR Am J Roentgenol 2014; 203 (1) W103-W109
  • 10 Dalbeth N, Aati O, Gao A , et al. Assessment of tophus size: a comparison between physical measurement methods and dual-energy computed tomography scanning. J Clin Rheumatol 2012; 18 (1) 23-27
  • 11 Shi D, Xu JX, Wu HX, Wang Y, Zhou QJ, Yu RS. Methods of assessment of tophus and bone erosions in gout using dual-energy CT: reproducibility analysis. Clin Rheumatol 2015; 34 (4) 755-765
  • 12 Schumacher HR, Taylor W, Edwards L , et al. Outcome domains for studies of acute and chronic gout. J Rheumatol 2009; 36 (10) 2342-2345
  • 13 Bacani AK, McCollough CH, Glazebrook KN , et al. Dual energy computed tomography for quantification of tissue urate deposits in tophaceous gout: help from modern physics in the management of an ancient disease. Rheumatol Int 2012; 32 (1) 235-239
  • 14 Rajan A, Aati O, Kalluru R , et al. Lack of change in urate deposition by dual-energy computed tomography among clinically stable patients with long-standing tophaceous gout: a prospective longitudinal study. Arthritis Res Ther 2013; 15 (5) R160
  • 15 Dalbeth N, House ME, Aati O , et al. Urate crystal deposition in asymptomatic hyperuricaemia and symptomatic gout: a dual energy CT study. Ann Rheum Dis 2015; 74 (5) 908-911
  • 16 Mallinson PI, Reagan AC, Coupal T, Munk PL, Ouellette H, Nicolaou S. The distribution of urate deposition within the extremities in gout: a review of 148 dual-energy CT cases. Skeletal Radiol 2014; 43 (3) 277-281
  • 17 Dalbeth N, Kalluru R, Aati O, Horne A, Doyle AJ, McQueen FM. Tendon involvement in the feet of patients with gout: a dual-energy CT study. Ann Rheum Dis 2013; 72 (9) 1545-1548
  • 18 Pache G, Krauss B, Strohm P , et al. Dual-energy CT virtual noncalcium technique: detecting posttraumatic bone marrow lesions—feasibility study. Radiology 2010; 256 (2) 617-624
  • 19 Cao JX, Wang YM, Kong XQ, Yang C, Wang P. Good interrater reliability of a new grading system in detecting traumatic bone marrow lesions in the knee by dual energy CT virtual non-calcium images. Eur J Radiol 2015; 84 (6) 1109-1115
  • 20 Ai S, Qu M, Glazebrook KN , et al. Use of dual-energy CT and virtual non-calcium techniques to evaluate post-traumatic bone bruises in knees in the subacute setting. Skeletal Radiol 2014; 43 (9) 1289-1295
  • 21 Guggenberger R, Gnannt R, Hodler J , et al. Diagnostic performance of dual-energy CT for the detection of traumatic bone marrow lesions in the ankle: comparison with MR imaging. Radiology 2012; 264 (1) 164-173
  • 22 Wang CK, Tsai JM, Chuang MT, Wang MT, Huang KY, Lin RM. Bone marrow edema in vertebral compression fractures: detection with dual-energy CT. Radiology 2013; 269 (2) 525-533
  • 23 Bierry G, Venkatasamy A, Kremer S, Dosch JC, Dietemann JL. Dual-energy CT in vertebral compression fractures: performance of visual and quantitative analysis for bone marrow edema demonstration with comparison to MRI. Skeletal Radiol 2014; 43 (4) 485-492
  • 24 Thomas C, Schabel C, Krauss B , et al. Dual-energy CT: virtual calcium subtraction for assessment of bone marrow involvement of the spine in multiple myeloma. AJR Am J Roentgenol 2015; 204 (3) W324-W331
  • 25 Reagan AC, Mallinson PI, O'Connell T , et al. Dual-energy computed tomographic virtual noncalcium algorithm for detection of bone marrow edema in acute fractures: early experiences. J Comput Assist Tomogr 2014; 38 (5) 802-805
  • 26 Lee YH, Kim S, Lim D, Suh JS, Song HT. Spectral parametric segmentation of contrast-enhanced dual-energy CT to detect bone metastasis: feasibility sensitivity study using whole-body bone scintigraphy. Acta Radiol 2015; 56 (4) 458-464
  • 27 Lohan DG, Motamedi K, Chow K , et al. Does dual-energy CT of lower-extremity tendons incur penalties in patient radiation exposure or reduced multiplanar reconstruction image quality?. AJR Am J Roentgenol 2008; 191 (5) 1386-1390
  • 28 Sun C, Miao F, Wang XM , et al. An initial qualitative study of dual-energy CT in the knee ligaments. Surg Radiol Anat 2008; 30 (5) 443-447
  • 29 Johnson TRC, Krauss B, Sedlmair M , et al. Material differentiation by dual energy CT: initial experience. Eur Radiol 2007; 17 (6) 1510-1517
  • 30 Khoury V, Guillin R, Dhanju J, Cardinal E. Ultrasound of ankle and foot: overuse and sports injuries. Semin Musculoskelet Radiol 2007; 11 (2) 149-161
  • 31 Tagliafico A, Rubino M, Autuori A, Bianchi S, Martinoli C. Wrist and hand ultrasound. Semin Musculoskelet Radiol 2007; 11 (2) 95-104
  • 32 Jacobson JA. Musculoskeletal ultrasound and MRI: which do I choose?. Semin Musculoskelet Radiol 2005; 9 (2) 135-149
  • 33 Mallinson P, Antoniades G, McLaughlin P , et al. Dual-energy computed tomographic tendon algorithm in acute trauma: initial experiences. J Comput Assist Tomogr 2014; 38 (3) 348-351
  • 34 Deng K, Zhang CQ, Li W , et al. Preliminary application of high-definition CT Gemstone Spectral Imaging in hand and foot tendons. Korean J Radiol 2012; 13 (6) 743-751
  • 35 Deng K, Sun C, Liu C, Ma R. Initial experience with visualizing hand and foot tendons by dual-energy computed tomography. Clin Imaging 2009; 33 (5) 384-389
  • 36 Fickert S, Niks M, Dinter DJ , et al. Assessment of the diagnostic value of dual-energy CT and MRI in the detection of iatrogenically induced injuries of anterior cruciate ligament in a porcine model. Skeletal Radiol 2013; 42 (3) 411-417
  • 37 Glazebrook KN, Brewerton LJ, Leng S , et al. Case-control study to estimate the performance of dual-energy computed tomography for anterior cruciate ligament tears in patients with history of knee trauma. Skeletal Radiol 2014; 43 (3) 297-305
  • 38 Mallinson PI, Stevens C, Reisinger C, Nicolaou S, Munk PL, Ouellette H. Achilles tendinopathy and partial tear diagnosis using dual-energy computed tomography collagen material decomposition application. J Comput Assist Tomogr 2013; 37 (3) 475-477
  • 39 Stevens CJ, Murphy DT, Korzan JR, Nicolaou S, Munk PL, Ouellette H. Plantar plate tear diagnosis using dual-energy computed tomography collagen material decomposition application. J Comput Assist Tomogr 2013; 37 (3) 478-480
  • 40 Becce F, Federau C, Letovanec I, Grandjean A, So AK, Rüdiger HA. Dual-energy computed tomography molecular imaging of pigmented villonodular synovitis. Rheumatology (Oxford) 2015; 54 (3) 457
  • 41 Pessis E, Sverzut JM, Campagna R , et al. Reduction of metal artifact with dual-energy CT: virtual monospectral imaging with fast kilovoltage switching and metal artifact reduction software. Semin Musculoskelet Radiol 2015; 19 (5) 446-455
  • 42 Vande Berg BC, Lecouvet FE, Poilvache P , et al. Dual-detector spiral CT arthrography of the knee: accuracy for detection of meniscal abnormalities and unstable meniscal tears. Radiology 2000; 216 (3) 851-857
  • 43 Omoumi P, Mercier GA, Lecouvet F, Simoni P, Vande Berg BC. CT arthrography, MR arthrography, PET, and scintigraphy in osteoarthritis. Radiol Clin North Am 2009; 47 (4) 595-615
  • 44 Omoumi P, Bafort AC, Dubuc JE, Malghem J, Vande Berg BC, Lecouvet FE. Evaluation of rotator cuff tendon tears: comparison of multidetector CT arthrography and 1.5-T MR arthrography. Radiology 2012; 264 (3) 812-822
  • 45 Omoumi P, Rubini A, Dubuc JE, Vande Berg BC, Lecouvet FE. Diagnostic performance of CT-arthrography and 1.5T MR-arthrography for the assessment of glenohumeral joint cartilage: a comparative study with arthroscopic correlation. Eur Radiol 2015; 25 (4) 961-969
  • 46 Omoumi P, Michoux N, Thienpont E, Roemer FW, Vande Berg BC. Anatomical distribution of areas of preserved cartilage in advanced femorotibial osteoarthritis using CT arthrography (Part 1). Osteoarthritis Cartilage 2015; 23 (1) 83-87
  • 47 Omoumi P, Teixeira P, Lecouvet F, Chung CB. Glenohumeral joint instability. J Magn Reson Imaging 2011; 33 (1) 2-16
  • 48 Malghem J, Omoumi P, Lecouvet F, Vande Berg B. Intraosseous migration of tendinous calcifications: cortical erosions, subcortical migration and extensive intramedullary diffusion, a SIMS series. Skeletal Radiol 2015; 44 (10) 1403-1412
  • 49 Chai JW, Choi JA, Choi JY, Kim S, Hong SH, Kang HS. Visualization of joint and bone using dual-energy CT arthrography with contrast subtraction: in vitro feasibility study using porcine joints. Skeletal Radiol 2014; 43 (5) 673-678
  • 50 Yuan R, Shuman WP, Earls JP , et al. Reduced iodine load at CT pulmonary angiography with dual-energy monochromatic imaging: comparison with standard CT pulmonary angiography—a prospective randomized trial. Radiology 2012; 262 (1) 290-297
  • 51 Dubourg B, Caudron J, Lestrat JP , et al. Single-source dual-energy CT angiography with reduced iodine load in patients referred for aortoiliofemoral evaluation before transcatheter aortic valve implantation: impact on image quality and radiation dose. Eur Radiol 2014; 24 (11) 2659-2668
  • 52 Subhas N, Freire M, Primak AN , et al. CT arthrography: in vitro evaluation of single and dual energy for optimization of technique. Skeletal Radiol 2010; 39 (10) 1025-1031
  • 53 Nicolaou S, Liang T, Murphy DT, Korzan JR, Ouellette H, Munk P. Dual-energy CT: a promising new technique for assessment of the musculoskeletal system. AJR Am J Roentgenol 2012; 199 (5, Suppl): S78-S86