Semin Respir Crit Care Med 2015; 36(06): 934-942
DOI: 10.1055/s-0035-1564925
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

The Assessment of the Right Heart Failure Syndrome

Cyrus A. Kholdani
1   Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, California
,
Ronald J. Oudiz
2   Division of Cardiology, Liu Center for Pulmonary Hypertension, LA Biomedical Research Institute at Harbor–UCLA Medical Center, Torrance, California
,
Wassim H. Fares
3   Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut
› Author Affiliations
Further Information

Publication History

Publication Date:
23 November 2015 (online)

Abstract

The right heart failure (RHF) syndrome is a pathophysiologically complex state commonly associated with dysfunction of the right ventricle (RV). The normal RV is suited for its purposes of distributing venous blood to the low-resistance pulmonary circulation. Myriad stresses imposed upon it, though, can ultimately result in its failure, with the threat of cardiovascular collapse being the most dreaded outcome. Decreased cardiac output with increased central venous pressures are hemodynamic hallmarks of this highly morbid condition. Proper management of RHF is predicated on the accurate assessment of the key hemodynamic and clinical components signaling the syndrome that is the result of the failing RV. Appropriate use of diagnostic tools is paramount for understanding the key components of RV function: the preload state of the RV, its contractility, and the afterload burden placed on it. In making these assessments, it remains crucial to understand the limitations of these tools when managing RHF in the intensive care unit. An understanding of each of these components allows for the understanding of the physiology and the clinical presentation which can guide the use of therapies appropriately tailored to manage the condition.

 
  • References

  • 1 Vonk-Noordegraaf A, Haddad F, Chin KM , et al. Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology. J Am Coll Cardiol 2013; 62 (25, Suppl): D22-D33
  • 2 Mehra MR, Park MH, Landzberg MJ, Lala A, Waxman AB. Right heart failure: toward a common language. Pulm Circ 2013; 3 (4) 963-967
  • 3 Zochios V, Jones N. Acute right heart syndrome in the critically ill patient. Heart Lung Vessel 2014; 6 (3) 157-170
  • 4 Vlahakes GJ, Turley K, Hoffman JI. The pathophysiology of failure in acute right ventricular hypertension: hemodynamic and biochemical correlations. Circulation 1981; 63 (1) 87-95
  • 5 Ho SY, Nihoyannopoulos P. Anatomy, echocardiography, and normal right ventricular dimensions. Heart 2006; 92 (Suppl. 01) i2-i13
  • 6 Lorenz CH, Walker ES, Morgan VL, Klein SS, Graham Jr TP. Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging. J Cardiovasc Magn Reson 1999; 1 (1) 7-21
  • 7 Foale R, Nihoyannopoulos P, McKenna W , et al. Echocardiographic measurement of the normal adult right ventricle. Br Heart J 1986; 56 (1) 33-44
  • 8 Reuse C, Vincent JL, Pinsky MR. Measurements of right ventricular volumes during fluid challenge. Chest 1990; 98 (6) 1450-1454
  • 9 Dell'Italia LJ, Walsh RA. Acute determinants of the hangout interval in the pulmonary circulation. Am Heart J 1988; 116 (5, Pt 1): 1289-1297
  • 10 Horsfield K. Morphometry of the small pulmonary arteries in man. Circ Res 1978; 42 (5) 593-597
  • 11 Warrell DA, Evans JW, Clarke RO, Kingaby GP, West JB. Pattern of filling in the pulmonary capillary bed. J Appl Physiol 1972; 32 (3) 346-356
  • 12 Dawson CA. Role of pulmonary vasomotion in physiology of the lung. Physiol Rev 1984; 64 (2) 544-616
  • 13 Brink C, Gillard V, Roubert P , et al. Effects and specific binding sites of endothelin in human lung preparations. Pulm Pharmacol 1991; 4 (1) 54-59
  • 14 Shibamoto T, Yamaguchi Y, Hayashi Jr T, Saeki Y, Kawamoto M, Koyama S. PAF increases capillary pressure but not vascular permeability in isolated blood-perfused canine lungs. Am J Physiol 1993; 264 (5, Pt 2): H1454-H1459
  • 15 Walch L, de Montpreville V, Brink C, Norel X. Prostanoid EP(1)- and TP-receptors involved in the contraction of human pulmonary veins. Br J Pharmacol 2001; 134 (8) 1671-1678
  • 16 Schellenberg RR, Foster A. Differential activity of leukotrienes upon human pulmonary vein and artery. Prostaglandins 1984; 27 (3) 475-482
  • 17 Hillier SC, Graham JA, Hanger CC, Godbey PS, Glenny RW, Wagner Jr WW. Hypoxic vasoconstriction in pulmonary arterioles and venules. J Appl Physiol (1985) 1997; 82 (4) 1084-1090
  • 18 Gao Y, Raj JU. Role of veins in regulation of pulmonary circulation. Am J Physiol Lung Cell Mol Physiol 2005; 288 (2) L213-L226
  • 19 Haddad F, Doyle R, Murphy DJ, Hunt SA. Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation 2008; 117 (13) 1717-1731
  • 20 Pawlush DG, Musch TI, Moore RL. Ca2+-dependent heterometric and homeometric autoregulation in hypertrophied rat heart. Am J Physiol 1989; 256 (4 Pt 2): H1139-H1147
  • 21 Alvarez BV, Pérez NG, Ennis IL, Camilión de Hurtado MC, Cingolani HE. Mechanisms underlying the increase in force and Ca(2+) transient that follow stretch of cardiac muscle: a possible explanation of the Anrep effect. Circ Res 1999; 85 (8) 716-722
  • 22 von Anrep G. On the part played by the suprarenals in the normal vascular reactions of the body. J Physiol 1912; 45 (5) 307-317
  • 23 Nootens M, Kaufmann E, Rector T , et al. Neurohormonal activation in patients with right ventricular failure from pulmonary hypertension: relation to hemodynamic variables and endothelin levels. J Am Coll Cardiol 1995; 26 (7) 1581-1585
  • 24 Guyton AC, Lindsey AW, Gilluly JJ. The limits of right ventricular compensation following acute increase in pulmonary circulatory resistance. Circ Res 1954; 2 (4) 326-332
  • 25 Simonneau G, Gatzoulis MA, Adatia I , et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 2013; 62 (25, Suppl): D34-D41
  • 26 Benza RL, Miller DP, Gomberg-Maitland M , et al. Predicting survival in pulmonary arterial hypertension: insights from the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL). Circulation 2010; 122 (2) 164-172
  • 27 Mehta NJ, Jani K, Khan IA. Clinical usefulness and prognostic value of elevated cardiac troponin I levels in acute pulmonary embolism. Am Heart J 2003; 145 (5) 821-825
  • 28 La Vecchia L, Ottani F, Favero L , et al. Increased cardiac troponin I on admission predicts in-hospital mortality in acute pulmonary embolism. Heart 2004; 90 (6) 633-637
  • 29 Tonelli AR, Baumgartner M, Alkukhun L, Minai OA, Dweik RA. Electrocardiography at diagnosis and close to the time of death in pulmonary arterial hypertension. Ann Noninvasive Electrocardiol 2014; 19: 258-265
  • 30 Kanemoto N. Electrocardiographic and hemodynamic correlations in primary pulmonary hypertension. Angiology 1988; 39 (9) 781-787
  • 31 Murphy ML, Thenabadu PN, de Soyza N , et al. Reevaluation of electrocardiographic criteria for left, right and combined cardiac ventricular hypertrophy. Am J Cardiol 1984; 53 (8) 1140-1147
  • 32 Kucher N, Walpoth N, Wustmann K, Noveanu M, Gertsch M. QR in V1—an ECG sign associated with right ventricular strain and adverse clinical outcome in pulmonary embolism. Eur Heart J 2003; 24 (12) 1113-1119
  • 33 James KB, Stelmach K, Armstrong R, Young JB, Fouad-Tarazi F. Plasma volume and outcome in pulmonary hypertension. Tex Heart Inst J 2003; 30: 305-307
  • 34 Price LC, Wort SJ, Finney SJ, Marino PS, Brett SJ. Pulmonary vascular and right ventricular dysfunction in adult critical care: current and emerging options for management: a systematic literature review. Crit Care 2010; 14 (5) R169
  • 35 Tajik AJ, Gau GT, Ritter DG, Schattenberg TT. Echocardiographic pattern of right ventricular diastolic volume overload in children. Circulation 1972; 46 (1) 36-43
  • 36 Louie EK, Rich S, Levitsky S, Brundage BH. Doppler echocardiographic demonstration of the differential effects of right ventricular pressure and volume overload on left ventricular geometry and filling. J Am Coll Cardiol 1992; 19 (1) 84-90
  • 37 Montenij LJ, de Waal EE, Buhre WF. Arterial waveform analysis in anesthesia and critical care. Curr Opin Anaesthesiol 2011; 24 (6) 651-656
  • 38 Marik PE. Noninvasive cardiac output monitors: a state-of the-art review. J Cardiothorac Vasc Anesth 2013; 27 (1) 121-134
  • 39 Marik PE, Cavallazzi R. Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit Care Med 2013; 41 (7) 1774-1781
  • 40 Costanzo MR, Guglin ME, Saltzberg MT , et al; UNLOAD Trial Investigators. Ultrafiltration versus intravenous diuretics for patients hospitalized for acute decompensated heart failure. J Am Coll Cardiol 2007; 49 (6) 675-683
  • 41 Fares WH, Blanchard SK, Stouffer GA , et al. Thermodilution and Fick cardiac outputs differ: impact on pulmonary hypertension evaluation. Can Respir J 2012; 19 (4) 261-266
  • 42 Forfia PR, Fisher MR, Mathai SC , et al. Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Respir Crit Care Med 2006; 174 (9) 1034-1041
  • 43 Ueti OM, Camargo EE, Ueti AdeA, de Lima-Filho EC, Nogueira EA. Assessment of right ventricular function with Doppler echocardiographic indices derived from tricuspid annular motion: comparison with radionuclide angiography. Heart 2002; 88 (3) 244-248
  • 44 Tei C, Dujardin KS, Hodge DO , et al. Doppler echocardiographic index for assessment of global right ventricular function. J Am Soc Echocardiogr 1996; 9 (6) 838-847
  • 45 Harjai KJ, Scott L, Vivekananthan K, Nunez E, Edupuganti R. The Tei index: a new prognostic index for patients with symptomatic heart failure. J Am Soc Echocardiogr 2002; 15 (9) 864-868
  • 46 Tongers J, Schwerdtfeger B, Klein G , et al. Incidence and clinical relevance of supraventricular tachyarrhythmias in pulmonary hypertension. Am Heart J 2007; 153 (1) 127-132
  • 47 O'Rourke RA, Dell'Italia LJ. Diagnosis and management of right ventricular myocardial infarction. Curr Probl Cardiol 2004; 29 (1) 6-47
  • 48 Goldstein JA, Harada A, Yagi Y, Barzilai B, Cox JL. Hemodynamic importance of systolic ventricular interaction, augmented right atrial contractility and atrioventricular synchrony in acute right ventricular dysfunction. J Am Coll Cardiol 1990; 16 (1) 181-189
  • 49 Lowensohn HS, Khouri EM, Gregg DE, Pyle RL, Patterson RE. Phasic right coronary artery blood flow in conscious dogs with normal and elevated right ventricular pressures. Circ Res 1976; 39 (6) 760-766
  • 50 Kwak YL, Lee CS, Park YH, Hong YW. The effect of phenylephrine and norepinephrine in patients with chronic pulmonary hypertension. Anaesthesia 2002; 57 (1) 9-14
  • 51 Ducas J, Duval D, Dasilva H, Boiteau P, Prewitt RM. Treatment of canine pulmonary hypertension: effects of norepinephrine and isoproterenol on pulmonary vascular pressure-flow characteristics. Circulation 1987; 75 (1) 235-242
  • 52 Kerbaul F, Rondelet B, Motte S , et al. Effects of norepinephrine and dobutamine on pressure load-induced right ventricular failure. Crit Care Med 2004; 32 (4) 1035-1040
  • 53 Leier CV, Webel J, Bush CA. The cardiovascular effects of the continuous infusion of dobutamine in patients with severe cardiac failure. Circulation 1977; 56 (3) 468-472
  • 54 Leier CV, Heban PT, Huss P, Bush CA, Lewis RP. Comparative systemic and regional hemodynamic effects of dopamine and dobutamine in patients with cardiomyopathic heart failure. Circulation 1978; 58 (3, Pt 1): 466-475
  • 55 Bradford KK, Deb B, Pearl RG. Combination therapy with inhaled nitric oxide and intravenous dobutamine during pulmonary hypertension in the rabbit. J Cardiovasc Pharmacol 2000; 36 (2) 146-151
  • 56 Vizza CD, Rocca GD, Roma AD , et al. Acute hemodynamic effects of inhaled nitric oxide, dobutamine and a combination of the two in patients with mild to moderate secondary pulmonary hypertension. Crit Care 2001; 5 (6) 355-361
  • 57 Honerjäger P. Pharmacology of bipyridine phosphodiesterase III inhibitors. Am Heart J 1991; 121 (6, Pt 2): 1939-1944
  • 58 Chen EP, Bittner HB, Davis Jr RD, Van Trigt III P. Milrinone improves pulmonary hemodynamics and right ventricular function in chronic pulmonary hypertension. Ann Thorac Surg 1997; 63 (3) 814-821
  • 59 Jeon Y, Ryu JH, Lim YJ , et al. Comparative hemodynamic effects of vasopressin and norepinephrine after milrinone-induced hypotension in off-pump coronary artery bypass surgical patients. Eur J Cardiothorac Surg 2006; 29 (6) 952-956
  • 60 Buckley MS, Feldman JP. Nebulized milrinone use in a pulmonary hypertensive crisis. Pharmacotherapy 2007; 27 (12) 1763-1766
  • 61 Brimioulle S, Maggiorini M, Stephanazzi J, Vermeulen F, Lejeune P, Naeije R. Effects of low flow on pulmonary vascular flow-pressure curves and pulmonary vascular impedance. Cardiovasc Res 1999; 42 (1) 183-192
  • 62 Segers P, Brimioulle S, Stergiopulos N , et al. Pulmonary arterial compliance in dogs and pigs: the three-element windkessel model revisited. Am J Physiol 1999; 277 (2, Pt 2): H725-H731
  • 63 Newman JH, Brittain EL, Robbins IM, Hemnes AR. Effect of acute arteriolar vasodilation on capacitance and resistance in pulmonary arterial hypertension. Chest 2015; 147 (4) 1080-1085
  • 64 Arkles JS, Opotowsky AR, Ojeda J , et al. Shape of the right ventricular Doppler envelope predicts hemodynamics and right heart function in pulmonary hypertension. Am J Respir Crit Care Med 2011; 183 (2) 268-276
  • 65 Fisher MR, Forfia PR, Chamera E , et al. Accuracy of Doppler echocardiography in the hemodynamic assessment of pulmonary hypertension. Am J Respir Crit Care Med 2009; 179 (7) 615-621
  • 66 King ME, Braun H, Goldblatt A, Liberthson R, Weyman AE. Interventricular septal configuration as a predictor of right ventricular systolic hypertension in children: a cross-sectional echocardiographic study. Circulation 1983; 68 (1) 68-75
  • 67 Griffiths MJ, Evans TW. Inhaled nitric oxide therapy in adults. N Engl J Med 2005; 353 (25) 2683-2695
  • 68 Weinberger B, Laskin DL, Heck DE, Laskin JD. The toxicology of inhaled nitric oxide. Toxicol Sci 2001; 59 (1) 5-16
  • 69 Pepke-Zaba J, Higenbottam TW, Dinh-Xuan AT, Stone D, Wallwork J. Inhaled nitric oxide as a cause of selective pulmonary vasodilatation in pulmonary hypertension. Lancet 1991; 338 (8776) 1173-1174
  • 70 Capellier G, Jacques T, Balvay P, Blasco G, Belle E, Barale F. Inhaled nitric oxide in patients with pulmonary embolism. Intensive Care Med 1997; 23 (10) 1089-1092
  • 71 Vater Y, Martay K, Dembo G, Bowdle TA, Weinbroum AA. Intraoperative epoprostenol and nitric oxide for severe pulmonary hypertension during orthotopic liver transplantation: a case report and review of the literature. Med Sci Monit 2006; 12 (12) CS115-CS118
  • 72 Atz AM, Wessel DL. Sildenafil ameliorates effects of inhaled nitric oxide withdrawal. Anesthesiology 1999; 91 (1) 307-310
  • 73 Barst RJ, Rubin LJ, Long WA , et al; Primary Pulmonary Hypertension Study Group. A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension. N Engl J Med 1996; 334 (5) 296-301
  • 74 Kieler-Jensen N, Milocco I, Ricksten SE. Pulmonary vasodilation after heart transplantation. A comparison among prostacyclin, sodium nitroprusside, and nitroglycerin on right ventricular function and pulmonary selectivity. J Heart Lung Transplant 1993; 12 (2) 179-184
  • 75 Zwissler B, Kemming G, Habler O , et al. Inhaled prostacyclin (PGI2) versus inhaled nitric oxide in adult respiratory distress syndrome. Am J Respir Crit Care Med 1996; 154 (6, Pt 1): 1671-1677
  • 76 De Wet CJ, Affleck DG, Jacobsohn E , et al. Inhaled prostacyclin is safe, effective, and affordable in patients with pulmonary hypertension, right heart dysfunction, and refractory hypoxemia after cardiothoracic surgery. J Thorac Cardiovasc Surg 2004; 127 (4) 1058-1067
  • 77 Khan TA, Schnickel G, Ross D , et al. A prospective, randomized, crossover pilot study of inhaled nitric oxide versus inhaled prostacyclin in heart transplant and lung transplant recipients. J Thorac Cardiovasc Surg 2009; 138 (6) 1417-1424