Semin Thromb Hemost 2016; 42(03): 191-204
DOI: 10.1055/s-0035-1564835
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Platelet Physiology

Thomas Gremmel
1   Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts
2   Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
,
Andrew L. Frelinger III
1   Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts
,
Alan D. Michelson
1   Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts
› Author Affiliations
Further Information

Publication History

Publication Date:
29 February 2016 (online)

Abstract

Platelets are the smallest blood cells, numbering 150 to 350 × 109/L in healthy individuals. The ability of activated platelets to adhere to an injured vessel wall and form aggregates was first described in the 19th century. Besides their long-established roles in thrombosis and hemostasis, platelets are increasingly recognized as pivotal players in numerous other pathophysiological processes including inflammation and atherogenesis, antimicrobial host defense, and tumor growth and metastasis. Consequently, profound knowledge of platelet structure and function is becoming more important in research and in many fields of modern medicine. This review provides an overview of platelet physiology focusing particularly on the structure, granules, surface glycoproteins, and activation pathways of platelets.

 
  • References

  • 1 Michelson AD. Platelets. 3rd ed. San Diego: Elsevier/Academic Press; 2013
  • 2 de Gaetano G, Cerletti C. Platelet adhesion and aggregation and fibrin formation in flowing blood: a historical contribution by Giulio Bizzozero. Platelets 2002; 13 (2) 85-89
  • 3 Brewer DB. Max Schultze (1865), G. Bizzozero (1882) and the discovery of the platelet. Br J Haematol 2006; 133 (3) 251-258
  • 4 Ruggeri ZM. Platelets in atherothrombosis. Nat Med 2002; 8 (11) 1227-1234
  • 5 Davì G, Patrono C. Platelet activation and atherothrombosis. N Engl J Med 2007; 357 (24) 2482-2494
  • 6 Lindemann S, Krämer B, Seizer P, Gawaz M. Platelets, inflammation and atherosclerosis. J Thromb Haemost 2007; 5 (Suppl. 01) 203-211
  • 7 Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol 2013; 13 (1) 34-45
  • 8 Gay LJ, Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Cancer 2011; 11 (2) 123-134
  • 9 Bessis M. Living Blood Cells and Their Ultrastructure. New York: Springer-Verlag; 1973
  • 10 White JG. Platelet structure. In: Michelson AD, ed. Platelets, 3rd ed. San Diego: Elsevier/Academic Press; 2013: 117-144
  • 11 White JG, Escolar G. Current concepts of platelet membrane response to surface activation. Platelets 1993; 4 (4) 175-189
  • 12 Kunicki TJ. Platelet glycoprotein antigens and immune receptors. Prog Clin Biol Res 1988; 283: 87-123
  • 13 White JG, Krumwiede MD, Cocking-Johnson DJ, Escolar G. Dynamic redistribution of glycoprotein Ib/IX on surface-activated platelets. A second look. Am J Pathol 1995; 147 (4) 1057-1067
  • 14 White JG, Krumwiede MD, Johnson DK, Escolar G. Redistribution of GPIb/IX and GPIIb/IIIa during spreading of discoid platelets. Br J Haematol 1995; 90 (3) 633-644
  • 15 White JG, Conard WJ. The fine structure of freeze-fractured blood platelets. Am J Pathol 1973; 70 (1) 45-56
  • 16 Behnke O. The morphology of blood platelet membrane systems. Ser Haematol 1970; 3 (4) 3-16
  • 17 Del Conde I, Shrimpton CN, Thiagarajan P, López JA. Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood 2005; 106 (5) 1604-1611
  • 18 White JG. The submembrane filaments of blood platelets. Am J Pathol 1969; 56 (2) 267-277
  • 19 Hartwig JH, DeSisto M. The cytoskeleton of the resting human blood platelet: structure of the membrane skeleton and its attachment to actin filaments. J Cell Biol 1991; 112 (3) 407-425
  • 20 Haydon GB, Taylor DA. Microtubules in hamster platelets. J Cell Biol 1965; 26 (2) 673-676
  • 21 Behnke O. Further studies on microtubules. A marginal bundle in human and rat thrombocytes. J Ultrastruct Res 1965; 13 (5) 469-477
  • 22 Bessis M, Breton-Gorius J. Microtubules and fibrils in spread-out platelets [in French]. Nouv Rev Fr Hematol 1965; 5 (4) 657-662
  • 23 White JG, Krivit W. An ultrastructural basis for the shape changes induced in platelets by chilling. Blood 1967; 30 (5) 625-635
  • 24 White JG. Effects of colchicine and vinca alkaloids on human platelets. II. Changes in the dense tubular system and formation of an unusual inclusion in incubated cells. Am J Pathol 1968; 53 (3) 447-461
  • 25 Escolar G, Krumwiede M, White JG. Organization of the actin cytoskeleton of resting and activated platelets in suspension. Am J Pathol 1986; 123 (1) 86-94
  • 26 White JG. Fine structural alterations induced in platelets by adenosine diphosphate. Blood 1968; 31 (5) 604-622
  • 27 White JG, Krumwiede M. Further studies of the secretory pathway in thrombin-stimulated human platelets. Blood 1987; 69 (4) 1196-1203
  • 28 White JG. Platelet glycosomes. Platelets 1999; 10 (4) 242-246
  • 29 White JG. Electron dense chains and clusters in human platelets. Platelets 2002; 13 (5–6) 317-325
  • 30 White JG. Medich giant platelet disorder: a unique alpha granule deficiency I. Structural abnormalities. Platelets 2004; 15 (6) 345-353
  • 31 King SM, Reed GL. Development of platelet secretory granules. Semin Cell Dev Biol 2002; 13 (4) 293-302
  • 32 Reed GL. Platelet secretory mechanisms. Semin Thromb Hemost 2004; 30 (4) 441-450
  • 33 White JG, Clawson CC. Development of giant granules in platelets during prolonged storage. Am J Pathol 1980; 101 (3) 635-646
  • 34 Krishnamurti L, Neglia JP, Nagarajan R , et al. Paris-Trousseau syndrome platelets in a child with Jacobsen's syndrome. Am J Hematol 2001; 66 (4) 295-299
  • 35 White JG, Key NS, King RA, Vercellotti GM. The White platelet syndrome: a new autosomal dominant platelet disorder. Platelets 2004; 15 (3) 173-184
  • 36 White JG. Tubular elements in platelet granules. Blood 1968; 32 (1) 148-156
  • 37 Berger G, Massé JM, Cramer EM. Alpha-granule membrane mirrors the platelet plasma membrane and contains the glycoproteins Ib, IX, and V. Blood 1996; 87 (4) 1385-1395
  • 38 White JG. Electron-dense chains and clusters in platelets from patients with storage pool-deficiency disorders. J Thromb Haemost 2003; 1 (1) 74-79
  • 39 Statland BE, Heagan BM, White JG. Uptake of calcium by platelet relaxing factor. Nature 1969; 223 (5205) 521-522
  • 40 White JG. Golgi complexes in hypogranular platelet syndromes. Platelets 2005; 16 (1) 51-60
  • 41 Behnke O. Electron microscopic observations on the membrane systems of the rat blood platelet. Anat Rec 1967; 158 (2) 121-137
  • 42 Behnke O. An electron microscope study of the megacaryocyte of the rat bone marrow. I. The development of the demarcation membrane system and the platelet surface coat. J Ultrastruct Res 1968; 24 (5) 412-433
  • 43 Breton-Gorius J. Development of two distinct membrane systems associated in giant complexes in pathological megakaryocytes. Ser Haematol 1975; 8 (1) 49-67
  • 44 White JG, Escolar G. The blood platelet open canalicular system: a two-way street. Eur J Cell Biol 1991; 56 (2) 233-242
  • 45 Escolar G, White JG. The platelet open canalicular system: a final common pathway. Blood Cells 1991; 17 (3) 467-485 , discussion 486–495
  • 46 White JG, Clawson CC. Effects of small latex particle uptake on the surface connected canalicular system of blood platelets: a freeze-fracture and cytochemical study. Diagn Histopathol 1982; 5 (1) 3-10
  • 47 Escolar G, Leistikow E, White JG. The fate of the open canalicular system in surface and suspension-activated platelets. Blood 1989; 74 (6) 1983-1988
  • 48 White JG. Platelets are covercytes, not phagocytes: uptake of bacteria involves channels of the open canalicular system. Platelets 2005; 16 (2) 121-131
  • 49 Tranzer JP, Da Prada M, Pletscher A. Ultrastructural localization of 5-hydroxytryptamine in blood platelets. Nature 1966; 212 (5070) 1574-1575
  • 50 Siegel A, Lüscher EF. Non-identity of the alpha-granules of human blood platelets with typical lysosomes. Nature 1967; 215 (5102) 745-747
  • 51 Flaumenhaft R. Platelet secretion. In: Michelson AD, ed. Platelets, 3rd ed. San Diego: Elsevier/Academic Press; 2013: 343-366
  • 52 Cramer EM, Harrison P, Savidge GF , et al. Uncoordinated expression of alpha-granule proteins in human megakaryocytes. Prog Clin Biol Res 1990; 356: 131-142
  • 53 Hegyi E, Heilbrun LK, Nakeff A. Immunogold probing of platelet factor 4 in different ploidy classes of rat megakaryocytes sorted by flow cytometry. Exp Hematol 1990; 18 (7) 789-793
  • 54 Hitchcock IS, Chen MM, King JR, Kaushansky K. YRRL motifs in the cytoplasmic domain of the thrombopoietin receptor regulate receptor internalization and degradation. Blood 2008; 112 (6) 2222-2231
  • 55 Heijnen HF, Debili N, Vainchencker W, Breton-Gorius J, Geuze HJ, Sixma JJ. Multivesicular bodies are an intermediate stage in the formation of platelet alpha-granules. Blood 1998; 91 (7) 2313-2325
  • 56 Youssefian T, Cramer EM. Megakaryocyte dense granule components are sorted in multivesicular bodies. Blood 2000; 95 (12) 4004-4007
  • 57 Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 1999; 94 (11) 3791-3799
  • 58 Raposo G, Marks MS, Cutler DF. Lysosome-related organelles: driving post-Golgi compartments into specialisation. Curr Opin Cell Biol 2007; 19 (4) 394-401
  • 59 Huang L, Kuo YM, Gitschier J. The pallid gene encodes a novel, syntaxin 13-interacting protein involved in platelet storage pool deficiency. Nat Genet 1999; 23 (3) 329-332
  • 60 Falcón-Pérez JM, Starcevic M, Gautam R, Dell'Angelica EC. BLOC-1, a novel complex containing the pallidin and muted proteins involved in the biogenesis of melanosomes and platelet-dense granules. J Biol Chem 2002; 277 (31) 28191-28199
  • 61 Nazarian R, Falcón-Pérez JM, Dell'Angelica EC. Biogenesis of lysosome-related organelles complex 3 (BLOC-3): a complex containing the Hermansky-Pudlak syndrome (HPS) proteins HPS1 and HPS4. Proc Natl Acad Sci U S A 2003; 100 (15) 8770-8775
  • 62 Kloer DP, Rojas R, Ivan V , et al. Assembly of the biogenesis of lysosome-related organelles complex-3 (BLOC-3) and its interaction with Rab9. J Biol Chem 2010; 285 (10) 7794-7804
  • 63 Huizing M, Parkes JM, Helip-Wooley A, White JG, Gahl WA. Platelet alpha granules in BLOC-2 and BLOC-3 subtypes of Hermansky-Pudlak syndrome. Platelets 2007; 18 (2) 150-157
  • 64 Maynard DM, Heijnen HF, Horne MK, White JG, Gahl WA. Proteomic analysis of platelet alpha-granules using mass spectrometry. J Thromb Haemost 2007; 5 (9) 1945-1955
  • 65 Nurden P, Jandrot-Perrus M, Combrié R , et al. Severe deficiency of glycoprotein VI in a patient with gray platelet syndrome. Blood 2004; 104 (1) 107-114
  • 66 Michelson AD, Furman MI. Laboratory markers of platelet activation and their clinical significance. Curr Opin Hematol 1999; 6 (5) 342-348
  • 67 Michelson AD. Flow cytometry: a clinical test of platelet function. Blood 1996; 87 (12) 4925-4936
  • 68 Michelson AD. Antiplatelet therapies for the treatment of cardiovascular disease. Nat Rev Drug Discov 2010; 9 (2) 154-169
  • 69 Coppinger JA, Cagney G, Toomey S , et al. Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions. Blood 2004; 103 (6) 2096-2104
  • 70 Holmsen H, Weiss HJ. Secretable storage pools in platelets. Annu Rev Med 1979; 30: 119-134
  • 71 Ruiz FA, Lea CR, Oldfield E, Docampo R. Human platelet dense granules contain polyphosphate and are similar to acidocalcisomes of bacteria and unicellular eukaryotes. J Biol Chem 2004; 279 (43) 44250-44257
  • 72 Aikawa M, Schoenbechler MJ, Barbaro JF, Sadun EH. Interaction of rabbit platelets and leukocytes in the release of histamine. Electron microscopic observations. Am J Pathol 1971; 63 (1) 85-98
  • 73 Dean GE, Fishkes H, Nelson PJ, Rudnick G. The hydrogen ion-pumping adenosine triphosphatase of platelet dense granule membrane. Differences from F1F0- and phosphoenzyme-type ATPases. J Biol Chem 1984; 259 (15) 9569-9574
  • 74 Jedlitschky G, Tirschmann K, Lubenow LE , et al. The nucleotide transporter MRP4 (ABCC4) is highly expressed in human platelets and present in dense granules, indicating a role in mediator storage. Blood 2004; 104 (12) 3603-3610
  • 75 Fukami MH, Holmsen H, Ugurbil K. Histamine uptake in pig platelets and isolated dense granules. Biochem Pharmacol 1984; 33 (23) 3869-3874
  • 76 Youssefian T, Massé JM, Rendu F, Guichard J, Cramer EM. Platelet and megakaryocyte dense granules contain glycoproteins Ib and IIb-IIIa. Blood 1997; 89 (11) 4047-4057
  • 77 Ginsberg MH, Taylor L, Painter RG. The mechanism of thrombin-induced platelet factor 4 secretion. Blood 1980; 55 (4) 661-668
  • 78 Stenberg PE, Shuman MA, Levine SP, Bainton DF. Redistribution of alpha-granules and their contents in thrombin-stimulated platelets. J Cell Biol 1984; 98 (2) 748-760
  • 79 Morgenstern E, Neumann K, Patscheke H. The exocytosis of human blood platelets. A fast freezing and freeze-substitution analysis. Eur J Cell Biol 1987; 43 (2) 273-282
  • 80 Feng D, Crane K, Rozenvayn N, Dvorak AM, Flaumenhaft R. Subcellular distribution of 3 functional platelet SNARE proteins: human cellubrevin, SNAP-23, and syntaxin 2. Blood 2002; 99 (11) 4006-4014
  • 81 Ferro-Novick S, Jahn R. Vesicle fusion from yeast to man. Nature 1994; 370 (6486) 191-193
  • 82 Ren Q, Barber HK, Crawford GL , et al. Endobrevin/VAMP-8 is the primary v-SNARE for the platelet release reaction. Mol Biol Cell 2007; 18 (1) 24-33
  • 83 Schraw TD, Rutledge TW, Crawford GL , et al. Granule stores from cellubrevin/VAMP-3 null mouse platelets exhibit normal stimulus-induced release. Blood 2003; 102 (5) 1716-1722
  • 84 Dowal L, Yang W, Freeman MR, Steen H, Flaumenhaft R. Proteomic analysis of palmitoylated platelet proteins. Blood 2011; 118 (13) e62-e73
  • 85 Lai KC, Flaumenhaft R. SNARE protein degradation upon platelet activation: calpain cleaves SNAP-23. J Cell Physiol 2003; 194 (2) 206-214
  • 86 Flaumenhaft R, Croce K, Chen E, Furie B, Furie BC. Proteins of the exocytotic core complex mediate platelet alpha-granule secretion. Roles of vesicle-associated membrane protein, SNAP-23, and syntaxin 4. J Biol Chem 1999; 274 (4) 2492-2501
  • 87 Polgár J, Reed GL. A critical role for N-ethylmaleimide-sensitive fusion protein (NSF) in platelet granule secretion. Blood 1999; 94 (4) 1313-1318
  • 88 Lemons PP, Chen D, Whiteheart SW. Molecular mechanisms of platelet exocytosis: requirements for alpha-granule release. Biochem Biophys Res Commun 2000; 267 (3) 875-880
  • 89 Sandrock K, Nakamura L, Vraetz T, Beutel K, Ehl S, Zieger B. Platelet secretion defect in patients with familial hemophagocytic lymphohistiocytosis type 5 (FHL-5). Blood 2010; 116 (26) 6148-6150
  • 90 Houng A, Polgar J, Reed GL. Munc18-syntaxin complexes and exocytosis in human platelets. J Biol Chem 2003; 278 (22) 19627-19633
  • 91 Karniguian A, Zahraoui A, Tavitian A. Identification of small GTP-binding rab proteins in human platelets: thrombin-induced phosphorylation of rab3B, rab6, and rab8 proteins. Proc Natl Acad Sci U S A 1993; 90 (16) 7647-7651
  • 92 Fitzgerald ML, Reed GL. Rab6 is phosphorylated in thrombin-activated platelets by a protein kinase C-dependent mechanism: effects on GTP/GDP binding and cellular distribution. Biochem J 1999; 342 (Pt 2): 353-360
  • 93 Tolmachova T, Anders R, Stinchcombe J , et al. A general role for Rab27a in secretory cells. Mol Biol Cell 2004; 15 (1) 332-344
  • 94 Tolmachova T, Abrink M, Futter CE, Authi KS, Seabra MC. Rab27b regulates number and secretion of platelet dense granules. Proc Natl Acad Sci U S A 2007; 104 (14) 5872-5877
  • 95 Ge S, Wittenberg NJ, Haynes CL. Quantitative and real-time detection of secretion of chemical messengers from individual platelets. Biochemistry 2008; 47 (27) 7020-7024
  • 96 Flaumenhaft R, Dilks JR, Rozenvayn N, Monahan-Earley RA, Feng D, Dvorak AM. The actin cytoskeleton differentially regulates platelet alpha-granule and dense-granule secretion. Blood 2005; 105 (10) 3879-3887
  • 97 Muallem S, Kwiatkowska K, Xu X, Yin HL. Actin filament disassembly is a sufficient final trigger for exocytosis in nonexcitable cells. J Cell Biol 1995; 128 (4) 589-598
  • 98 Suzuki Y, Yamamoto M, Wada H , et al. Agonist-induced regulation of myosin phosphatase activity in human platelets through activation of Rho-kinase. Blood 1999; 93 (10) 3408-3417
  • 99 Watanabe Y, Ito M, Kataoka Y , et al. Protein kinase C-catalyzed phosphorylation of an inhibitory phosphoprotein of myosin phosphatase is involved in human platelet secretion. Blood 2001; 97 (12) 3798-3805
  • 100 Nishikawa M, Tanaka T, Hidaka H. Ca2+-calmodulin-dependent phosphorylation and platelet secretion. Nature 1980; 287 (5785) 863-865
  • 101 Kunert S, Meyer I, Fleischhauer S , et al. The microtubule modulator RanBP10 plays a critical role in regulation of platelet discoid shape and degranulation. Blood 2009; 114 (27) 5532-5540
  • 102 Schwer HD, Lecine P, Tiwari S, Italiano Jr JE, Hartwig JH, Shivdasani RA. A lineage-restricted and divergent beta-tubulin isoform is essential for the biogenesis, structure and function of blood platelets. Curr Biol 2001; 11 (8) 579-586
  • 103 Knight DE, Scrutton MC. Direct evidence for a role for Ca2+ in amine storage granule secretion by human platelets. Thromb Res 1980; 20 (4) 437-446
  • 104 Gilio K, Harper MT, Cosemans JM , et al. Functional divergence of platelet protein kinase C (PKC) isoforms in thrombus formation on collagen. J Biol Chem 2010; 285 (30) 23410-23419
  • 105 Nagy Jr B, Bhavaraju K, Getz T, Bynagari YS, Kim S, Kunapuli SP. Impaired activation of platelets lacking protein kinase C-theta isoform. Blood 2009; 113 (11) 2557-2567
  • 106 Chari R, Getz T, Nagy Jr B , et al. Protein kinase C[delta] differentially regulates platelet functional responses. Arterioscler Thromb Vasc Biol 2009; 29 (5) 699-705
  • 107 Suzuki H, Murasaki K, Kodama K, Takayama H. Intracellular localization of glycoprotein VI in human platelets and its surface expression upon activation. Br J Haematol 2003; 121 (6) 904-912
  • 108 Romp KG, Monroe DM, Hoffman M. Platelets contain releasable coagulation factor IX antigen. Blood Coagul Fibrinolysis 1993; 4 (6) 905-910
  • 109 Schwarz HP, Heeb MJ, Wencel-Drake JD, Griffin JH. Identification and quantitation of protein S in human platelets. Blood 1985; 66 (6) 1452-1455
  • 110 Novotny WF, Girard TJ, Miletich JP, Broze Jr GJ. Platelets secrete a coagulation inhibitor functionally and antigenically similar to the lipoprotein associated coagulation inhibitor. Blood 1988; 72 (6) 2020-2025
  • 111 Nurden AT, Nurden P. The gray platelet syndrome: clinical spectrum of the disease. Blood Rev 2007; 21 (1) 21-36
  • 112 Golino P, Crea F, Willerson JT. How to study the effects of platelet aggregation and thrombosis on coronary vasomotion and their clinical relevance. Ital Heart J 2002; 3 (4) 220-225
  • 113 Louie S, Kim BK, Zamecnik P. Diadenosine 5′,5″'-P1,P4-tetraphosphate, a potential antithrombotic agent. Thromb Res 1988; 49 (6) 557-565
  • 114 Chang H, Yanachkov IB, Michelson AD , et al. Agonist and antagonist effects of diadenosine tetraphosphate, a platelet dense granule constituent, on platelet P2Y1, P2Y12 and P2×1 receptors. Thromb Res 2010; 125 (2) 159-165
  • 115 Weiss HJ, Turitto VT, Baumgartner HR. Platelet adhesion and thrombus formation on subendothelium in platelets deficient in glycoproteins IIb-IIIa, Ib, and storage granules. Blood 1986; 67 (2) 322-330
  • 116 Graham GJ, Ren Q, Dilks JR, Blair P, Whiteheart SW, Flaumenhaft R. Endobrevin/VAMP-8-dependent dense granule release mediates thrombus formation in vivo. Blood 2009; 114 (5) 1083-1090
  • 117 Larsen E, Palabrica T, Sajer S , et al. PADGEM-dependent adhesion of platelets to monocytes and neutrophils is mediated by a lineage-specific carbohydrate, LNF III (CD15). Cell 1990; 63 (3) 467-474
  • 118 Diacovo TG, Puri KD, Warnock RA, Springer TA, von Andrian UH. Platelet-mediated lymphocyte delivery to high endothelial venules. Science 1996; 273 (5272) 252-255
  • 119 Zarbock A, Singbartl K, Ley K. Complete reversal of acid-induced acute lung injury by blocking of platelet-neutrophil aggregation. J Clin Invest 2006; 116 (12) 3211-3219
  • 120 Gleissner CA, von Hundelshausen P, Ley K. Platelet chemokines in vascular disease. Arterioscler Thromb Vasc Biol 2008; 28 (11) 1920-1927
  • 121 Brandt E, Petersen F, Ludwig A, Ehlert JE, Bock L, Flad HD. The beta-thromboglobulins and platelet factor 4: blood platelet-derived CXC chemokines with divergent roles in early neutrophil regulation. J Leukoc Biol 2000; 67 (4) 471-478
  • 122 Slungaard A. Platelet factor 4: a chemokine enigma. Int J Biochem Cell Biol 2005; 37 (6) 1162-1167
  • 123 Kasper B, Brandt E, Bulfone-Paus S, Petersen F. Platelet factor 4 (PF-4)-induced neutrophil adhesion is controlled by src-kinases, whereas PF-4-mediated exocytosis requires the additional activation of p38 MAP kinase and phosphatidylinositol 3-kinase. Blood 2004; 103 (5) 1602-1610
  • 124 von Hundelshausen P, Petersen F, Brandt E. Platelet-derived chemokines in vascular biology. Thromb Haemost 2007; 97 (5) 704-713
  • 125 Müller F, Mutch NJ, Schenk WA , et al. Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell 2009; 139 (6) 1143-1156
  • 126 Paigen B, Holmes PA, Novak EK, Swank RT. Analysis of atherosclerosis susceptibility in mice with genetic defects in platelet function. Arteriosclerosis 1990; 10 (4) 648-652
  • 127 Klinger MH, Jelkmann W. Role of blood platelets in infection and inflammation. J Interferon Cytokine Res 2002; 22 (9) 913-922
  • 128 Rendu F, Brohard-Bohn B. The platelet release reaction: granules' constituents, secretion and functions. Platelets 2001; 12 (5) 261-273
  • 129 Brill A, Elinav H, Varon D. Differential role of platelet granular mediators in angiogenesis. Cardiovasc Res 2004; 63 (2) 226-235
  • 130 Italiano Jr JE, Richardson JL, Patel-Hett S , et al. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood 2008; 111 (3) 1227-1233
  • 131 Ma L, Perini R, McKnight W , et al. Proteinase-activated receptors 1 and 4 counter-regulate endostatin and VEGF release from human platelets. Proc Natl Acad Sci U S A 2005; 102 (1) 216-220
  • 132 Battinelli EM, Markens BA, Italiano Jr JE. Release of angiogenesis regulatory proteins from platelet alpha granules: modulation of physiologic and pathologic angiogenesis. Blood 2011; 118 (5) 1359-1369
  • 133 Ho-Tin-Noé B, Goerge T, Cifuni SM, Duerschmied D, Wagner DD. Platelet granule secretion continuously prevents intratumor hemorrhage. Cancer Res 2008; 68 (16) 6851-6858
  • 134 Karpatkin S, Pearlstein E, Salk PL, Yogeeswaran G. Role of platelets in tumor cell metastases. Ann N Y Acad Sci 1981; 370: 101-118
  • 135 Nash GF, Turner LF, Scully MF, Kakkar AK. Platelets and cancer. Lancet Oncol 2002; 3 (7) 425-430
  • 136 Nagai M, Sato S, Kamoi H, Kamoi K. Effects of application of platelet releasate in periodontal regeneration therapy. Int J Periodontics Restorative Dent 2005; 25 (6) 571-583
  • 137 Moulin V, Lawny F, Barritault D, Caruelle JP. Platelet releasate treatment improves skin healing in diabetic rats through endogenous growth factor secretion. Cell Mol Biol (Noisy-le-grand) 1998; 44 (6) 961-971
  • 138 Clemetson KJ, Clemetson JM. Platelet receptors. In: Michelson AD, ed. Platelets, 3rd ed. San Diego: Elsevier/Academic Press; 2013: 169-194
  • 139 Andrews RK, Gardiner EE, Shen Y, Whisstock JC, Berndt MC. Glycoprotein Ib-IX-V. Int J Biochem Cell Biol 2003; 35 (8) 1170-1174
  • 140 Andrews RK, Gardiner EE, Shen Y, Berndt MC. Platelet interactions in thrombosis. IUBMB Life 2004; 56 (1) 13-18
  • 141 Andrews RK, Berndt MC. The GPIb-IX-V complex. In: Michelson AD, ed. Platelets, 3rd ed. San Diego: Elsevier/Academic Press; 2013: 195-213
  • 142 López JA, Andrews RK, Afshar-Kharghan V, Berndt MC. Bernard-Soulier syndrome. Blood 1998; 91 (12) 4397-4418
  • 143 López JA. The platelet glycoprotein Ib-IX complex. Blood Coagul Fibrinolysis 1994; 5 (1) 97-119
  • 144 Lopez JA, Chung DW, Fujikawa K, Hagen FS, Papayannopoulou T, Roth GJ. Cloning of the alpha chain of human platelet glycoprotein Ib: a transmembrane protein with homology to leucine-rich alpha 2-glycoprotein. Proc Natl Acad Sci U S A 1987; 84 (16) 5615-5619
  • 145 Kauskot A, Hoylaerts MF. Platelet receptors. Handbook Exp Pharmacol 2012; 210 (210) 23-57
  • 146 Nieswandt B, Watson SP. Platelet-collagen interaction: is GPVI the central receptor?. Blood 2003; 102 (2) 449-461
  • 147 Jurk K, Clemetson KJ, de Groot PG , et al. Thrombospondin-1 mediates platelet adhesion at high shear via glycoprotein Ib (GPIb): an alternative/backup mechanism to von Willebrand factor. FASEB J 2003; 17 (11) 1490-1492
  • 148 Romo GM, Dong JF, Schade AJ , et al. The glycoprotein Ib-IX-V complex is a platelet counterreceptor for P-selectin. J Exp Med 1999; 190 (6) 803-814
  • 149 Simon DI, Chen Z, Xu H , et al. Platelet glycoprotein ibalpha is a counterreceptor for the leukocyte integrin Mac-1 (CD11b/CD18). J Exp Med 2000; 192 (2) 193-204
  • 150 Baglia FA, Badellino KO, Li CQ, Lopez JA, Walsh PN. Factor XI binding to the platelet glycoprotein Ib-IX-V complex promotes factor XI activation by thrombin. J Biol Chem 2002; 277 (3) 1662-1668
  • 151 Joseph K, Nakazawa Y, Bahou WF, Ghebrehiwet B, Kaplan AP. Platelet glycoprotein Ib: a zinc-dependent binding protein for the heavy chain of high-molecular-weight kininogen. Mol Med 1999; 5 (8) 555-563
  • 152 Bradford HN, Pixley RA, Colman RW. Human factor XII binding to the glycoprotein Ib-IX-V complex inhibits thrombin-induced platelet aggregation. J Biol Chem 2000; 275 (30) 22756-22763
  • 153 Gardiner EE, Arthur JF, Shen Y , et al. GPIbalpha-selective activation of platelets induces platelet signaling events comparable to GPVI activation events. Platelets 2010; 21 (4) 244-252
  • 154 Schulte am Esch II J, Cruz MA, Siegel JB, Anrather J, Robson SC. Activation of human platelets by the membrane-expressed A1 domain of von Willebrand factor. Blood 1997; 90 (11) 4425-4437
  • 155 Kasirer-Friede A, Cozzi MR, Mazzucato M, De Marco L, Ruggeri ZM, Shattil SJ. Signaling through GP Ib-IX-V activates alpha IIb beta 3 independently of other receptors. Blood 2004; 103 (9) 3403-3411
  • 156 Furihata K, Clemetson KJ, Deguchi H, Kunicki TJ. Variation in human platelet glycoprotein VI content modulates glycoprotein VI-specific prothrombinase activity. Arterioscler Thromb Vasc Biol 2001; 21 (11) 1857-1863
  • 157 Best D, Senis YA, Jarvis GE , et al. GPVI levels in platelets: relationship to platelet function at high shear. Blood 2003; 102 (8) 2811-2818
  • 158 Samaha FF, Hibbard C, Sacks J , et al. Density of platelet collagen receptors glycoprotein VI and alpha2beta1 and prior myocardial infarction in human subjects, a pilot study. Med Sci Monit 2005; 11 (5) CR224-CR229
  • 159 Senis YA, Tomlinson MG, Ellison S , et al. The tyrosine phosphatase CD148 is an essential positive regulator of platelet activation and thrombosis. Blood 2009; 113 (20) 4942-4954
  • 160 Pollitt AY, Hughes CE, Watson SP. GPVI and CLEC-2. I In: Michelson AD, ed. Platelets, 3rd ed. San Diego: Elsevier/Academic Press; 2013: 215-231
  • 161 Andrews RK, Suzuki-Inoue K, Shen Y, Tulasne D, Watson SP, Berndt MC. Interaction of calmodulin with the cytoplasmic domain of platelet glycoprotein VI. Blood 2002; 99 (11) 4219-4221
  • 162 Suzuki-Inoue K, Tulasne D, Shen Y , et al. Association of Fyn and Lyn with the proline-rich domain of glycoprotein VI regulates intracellular signaling. J Biol Chem 2002; 277 (24) 21561-21566
  • 163 Berlanga O, Bori-Sanz T, James JR , et al. Glycoprotein VI oligomerization in cell lines and platelets. J Thromb Haemost 2007; 5 (5) 1026-1033
  • 164 Miura Y, Takahashi T, Jung SM, Moroi M. Analysis of the interaction of platelet collagen receptor glycoprotein VI (GPVI) with collagen. A dimeric form of GPVI, but not the monomeric form, shows affinity to fibrous collagen. J Biol Chem 2002; 277 (48) 46197-46204
  • 165 Jung SM, Tsuji K, Moroi M. Glycoprotein (GP) VI dimer as a major collagen-binding site of native platelets: direct evidence obtained with dimeric GPVI-specific Fabs. J Thromb Haemost 2009; 7 (8) 1347-1355
  • 166 Zahid M, Loyau S, Bouabdelli M, Aubrey N, Jandrot-Perrus M, Billiald P. Design and reshaping of an scFv directed against human platelet glycoprotein VI with diagnostic potential. Anal Biochem 2011; 417 (2) 274-282
  • 167 Nieswandt B, Bergmeier W, Schulte V, Rackebrandt K, Gessner JE, Zirngibl H. Expression and function of the mouse collagen receptor glycoprotein VI is strictly dependent on its association with the FcRgamma chain. J Biol Chem 2000; 275 (31) 23998-24002
  • 168 Watson S, Berlanga O, Best D, Frampton J. Update on collagen receptor interactions in platelets: is the two-state model still valid?. Platelets 2000; 11 (5) 252-258
  • 169 Nieswandt B, Brakebusch C, Bergmeier W , et al. Glycoprotein VI but not alpha2beta1 integrin is essential for platelet interaction with collagen. EMBO J 2001; 20 (9) 2120-2130
  • 170 Hermans C, Wittevrongel C, Thys C, Smethurst PA, Van Geet C, Freson K. A compound heterozygous mutation in glycoprotein VI in a patient with a bleeding disorder. J Thromb Haemost 2009; 7 (8) 1356-1363
  • 171 Dumont B, Lasne D, Rothschild C , et al. Absence of collagen-induced platelet activation caused by compound heterozygous GPVI mutations. Blood 2009; 114 (9) 1900-1903
  • 172 Ho-Tin-Noé B, Demers M, Wagner DD. How platelets safeguard vascular integrity. J Thromb Haemost 2011; 9 (Suppl. 01) 56-65
  • 173 Echtler K, Stark K, Lorenz M , et al. Platelets contribute to postnatal occlusion of the ductus arteriosus. Nat Med 2010; 16 (1) 75-82
  • 174 Boilard E, Nigrovic PA, Larabee K , et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 2010; 327 (5965) 580-583
  • 175 Bennett JS. The molecular biology of platelet membrane proteins. Semin Hematol 1990; 27 (2) 186-204
  • 176 Plow EF, Byzova T. The biology of glycoprotein IIb-IIIa. Coron Artery Dis 1999; 10 (8) 547-551
  • 177 Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell 2002; 110 (6) 673-687
  • 178 Ruoslahti E, Engvall E. Integrins and vascular extracellular matrix assembly. J Clin Invest 1997; 99 (6) 1149-1152
  • 179 Beer AJ, Schwaiger M. Imaging of integrin alphavbeta3 expression. Cancer Metastasis Rev 2008; 27 (4) 631-644
  • 180 Uzan G, Prenant M, Prandini MH, Martin F, Marguerie G. Tissue-specific expression of the platelet GPIIb gene. J Biol Chem 1991; 266 (14) 8932-8939
  • 181 Trikha M, Timar J, Lundy SK , et al. Human prostate carcinoma cells express functional alphaIIb(beta)3 integrin. Cancer Res 1996; 56 (21) 5071-5078
  • 182 Emambokus NR, Frampton J. The glycoprotein IIb molecule is expressed on early murine hematopoietic progenitors and regulates their numbers in sites of hematopoiesis. Immunity 2003; 19 (1) 33-45
  • 183 Oki T, Kitaura J, Eto K , et al. Integrin alphaIIbbeta3 induces the adhesion and activation of mast cells through interaction with fibrinogen. J Immunol 2006; 176 (6) 3841
  • 184 Oki T, Eto K, Izawa K , et al. Evidence that integrin alpha IIb beta 3-dependent interaction of mast cells with fibrinogen exacerbates chronic inflammation. J Biol Chem 2009; 284 (45) 31463-31472
  • 185 Sheldrake HM, Patterson LH. Function and antagonism of beta3 integrins in the development of cancer therapy. Curr Cancer Drug Targets 2009; 9 (4) 519-540
  • 186 Niiya K, Hodson E, Bader R , et al. Increased surface expression of the membrane glycoprotein IIb/IIIa complex induced by platelet activation. Relationship to the binding of fibrinogen and platelet aggregation. Blood 1987; 70 (2) 475-483
  • 187 Wagner CL, Mascelli MA, Neblock DS, Weisman HF, Coller BS, Jordan RE. Analysis of GPIIb/IIIa receptor number by quantification of 7E3 binding to human platelets. Blood 1996; 88 (3) 907-914
  • 188 Phillips DR, Charo IF, Parise LV, Fitzgerald LA. The platelet membrane glycoprotein IIb-IIIa complex. Blood 1988; 71 (4) 831-843
  • 189 Wencel-Drake JD, Plow EF, Kunicki TJ, Woods VL, Keller DM, Ginsberg MH. Localization of internal pools of membrane glycoproteins involved in platelet adhesive responses. Am J Pathol 1986; 124 (2) 324-334
  • 190 Woods Jr VL, Wolff LE, Keller DM. Resting platelets contain a substantial centrally located pool of glycoprotein IIb-IIIa complex which may be accessible to some but not other extracellular proteins. J Biol Chem 1986; 261 (32) 15242-15251
  • 191 Fujimura K, Phillips DR. Calcium cation regulation of glycoprotein IIb-IIIa complex formation in platelet plasma membranes. J Biol Chem 1983; 258 (17) 10247-10252
  • 192 Zhu J, Luo BH, Xiao T, Zhang C, Nishida N, Springer TA. Structure of a complete integrin ectodomain in a physiologic resting state and activation and deactivation by applied forces. Mol Cell 2008; 32 (6) 849-861
  • 193 Zimrin AB, Gidwitz S, Lord S , et al. The genomic organization of platelet glycoprotein IIIa. J Biol Chem 1990; 265 (15) 8590-8595
  • 194 Fitzgerald LA, Steiner B, Rall Jr SC, Lo SS, Phillips DR. Protein sequence of endothelial glycoprotein IIIa derived from a cDNA clone. Identity with platelet glycoprotein IIIa and similarity to “integrin”. J Biol Chem 1987; 262 (9) 3936-3939
  • 195 Xiong JP, Stehle T, Diefenbach B , et al. Crystal structure of the extracellular segment of integrin alpha Vbeta3. Science 2001; 294 (5541) 339-345
  • 196 Xiao T, Takagi J, Coller BS, Wang JH, Springer TA. Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature 2004; 432 (7013) 59-67
  • 197 Bledzka K, Pesho MM, Ma YQ, Plow EF. Integrin αIIbβ3. In: Michelson AD, ed. Platelets, 3rd ed. San Diego: Elsevier/Academic Press; 2013: 233-248
  • 198 Savage B, Cattaneo M, Ruggeri ZM. Mechanisms of platelet aggregation. Curr Opin Hematol 2001; 8 (5) 270-276
  • 199 Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992; 69 (1) 11-25
  • 200 Plow EF, Haas TA, Zhang L, Loftus J, Smith JW. Ligand binding to integrins. J Biol Chem 2000; 275 (29) 21785-21788
  • 201 Reheman A, Gross P, Yang H , et al. Vitronectin stabilizes thrombi and vessel occlusion but plays a dual role in platelet aggregation. J Thromb Haemost 2005; 3 (5) 875-883
  • 202 Bhatt DL, Topol EJ. Current role of platelet glycoprotein IIb/IIIa inhibitors in acute coronary syndromes. JAMA 2000; 284 (12) 1549-1558
  • 203 Lischke S, Schneider DJ. Recent developments in the use of antiplatelet agents to prevent cardiovascular events. Future Cardiol 2011; 7 (3) 403-413
  • 204 Jennings LK. Mechanisms of platelet activation: need for new strategies to protect against platelet-mediated atherothrombosis. Thromb Haemost 2009; 102 (2) 248-257
  • 205 Kahn ML, Zheng YW, Huang W , et al. A dual thrombin receptor system for platelet activation. Nature 1998; 394 (6694) 690-694
  • 206 Leger AJ, Covic L, Kuliopulos A. Protease-activated receptors in cardiovascular diseases. Circulation 2006; 114 (10) 1070-1077
  • 207 Dörmann D, Clemetson KJ, Kehrel BE. The GPIb thrombin-binding site is essential for thrombin-induced platelet procoagulant activity. Blood 2000; 96 (7) 2469-2478
  • 208 Adam F, Guillin MC, Jandrot-Perrus M. Glycoprotein Ib-mediated platelet activation. A signalling pathway triggered by thrombin. Eur J Biochem 2003; 270 (14) 2959-2970
  • 209 De Candia E, Hall SW, Rutella S, Landolfi R, Andrews RK, De Cristofaro R. Binding of thrombin to glycoprotein Ib accelerates the hydrolysis of Par-1 on intact platelets. J Biol Chem 2001; 276 (7) 4692-4698
  • 210 Zhang P, Covic L, Kuliopulos A. Protease-activated receptors. In: Michelson AD, ed. Platelets, 3rd ed. San Diego: Elsevier/Academic Press; 2013: 249-259
  • 211 Kahn ML, Nakanishi-Matsui M, Shapiro MJ, Ishihara H, Coughlin SR. Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. J Clin Invest 1999; 103 (6) 879-887
  • 212 Nakanishi-Matsui M, Zheng YW, Sulciner DJ, Weiss EJ, Ludeman MJ, Coughlin SR. PAR3 is a cofactor for PAR4 activation by thrombin. Nature 2000; 404 (6778) 609-613
  • 213 De Candia E. Mechanisms of platelet activation by thrombin: a short history. Thromb Res 2012; 129 (3) 250-256
  • 214 Morrow DA, Braunwald E, Bonaca MP , et al; TRA 2P–TIMI 50 Steering Committee and Investigators. Vorapaxar in the secondary prevention of atherothrombotic events. N Engl J Med 2012; 366 (15) 1404-1413
  • 215 Tricoci P, Huang Z, Held C , et al; TRACER Investigators. Thrombin-receptor antagonist vorapaxar in acute coronary syndromes. N Engl J Med 2012; 366 (1) 20-33
  • 216 Born GV. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 1962; 194: 927-929
  • 217 Cattaneo M. The platelet P2 receptors. In: Michelson AD, ed. Platelets, 3rd ed. San Diego: Elsevier/Academic Press; 2013: 261-281
  • 218 Jin J, Daniel JL, Kunapuli SP. Molecular basis for ADP-induced platelet activation. II. The P2Y1 receptor mediates ADP-induced intracellular calcium mobilization and shape change in platelets. J Biol Chem 1998; 273 (4) 2030-2034
  • 219 Hardy AR, Jones ML, Mundell SJ, Poole AW. Reciprocal cross-talk between P2Y1 and P2Y12 receptors at the level of calcium signaling in human platelets. Blood 2004; 104 (6) 1745-1752
  • 220 Jin J, Kunapuli SP. Coactivation of two different G protein-coupled receptors is essential for ADP-induced platelet aggregation. Proc Natl Acad Sci U S A 1998; 95 (14) 8070-8074
  • 221 Cattaneo M. P2Y12 receptor antagonists: a rapidly expanding group of antiplatelet agents. Eur Heart J 2006; 27 (9) 1010-1012
  • 222 Cattaneo M. New P2Y12 blockers. J Thromb Haemost 2009; 7 (Suppl. 01) 262-265
  • 223 Yusuf S, Zhao F, Mehta SR, Chrolavicius S, Tognoni G, Fox KK ; Clopidogrel in Unstable Angina to Prevent Recurrent Events Trial Investigators. Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N Engl J Med 2001; 345 (7) 494-502
  • 224 Wiviott SD, Braunwald E, McCabe CH , et al; TRITON-TIMI 38 Investigators. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 2007; 357 (20) 2001-2015
  • 225 Wallentin L, Becker RC, Budaj A , et al; PLATO Investigators. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 2009; 361 (11) 1045-1057