Der Nuklearmediziner 2015; 38(04): 275-282
DOI: 10.1055/s-0035-1564201
Normvarianten und Varianten bei PET/CT-Untersuchungen
© Georg Thieme Verlag KG Stuttgart · New York

Typische falsch negative und falsch positive Befunde bei der FDG-PET/CT

Typical False Negative and False Positive Findings on FDG PET/CT
B. Schmidbauer
1   Abteilung für Nuklearmedizin, Universitätsklinikum Regensburg, Regensburg
,
D. Hellwig
1   Abteilung für Nuklearmedizin, Universitätsklinikum Regensburg, Regensburg
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
15. Dezember 2015 (online)

Zusammenfassung

Die FDG-PET/CT ist ein wichtiges diagnostisches Instrument bei onkologischen Fragestellungen und entwickelt sich immer mehr zur Standarddiagnostik. Darüber hinaus ist es ein zunehmend nachgefragtes Verfahren zur Entzündungsdiagnostik und Lokalisation eines Infektfokus. Umso bedeutsamer ist es daher, sich typischer Fallstricke bei der Befundung gewahr zu sein. Der folgende Beitrag soll daher eine Übersicht über typische erkrankungsbedingt falsch positive sowie falsch negative Befunde verschaffen. Hierzu erfolgt eine selektive Darstellung der aktuellen Literatur mit Illustration durch Bildbeispiele.

Differenzialdiagnostisch zu bedenken ist bei erhöhtem FDG-Uptake insbesondere ein entzündliches Geschehen. Daneben kann es auch im Rahmen der Therapie, bspw. nach Chemo- oder Immuntherapie, Bestrahlung oder durch Zytokine, zu Veränderungen der FDG-Aufnahme in Lymphknoten, Knochenmark oder sonstigen Organen kommen. Die Aktivierung von braunem Fettgewebe führt zu vermehrter FDG-Aufnahme. Auch die Aufnahmetechnik und Patientenvorbereitung bergen einige Fehlerquellen. Ungenauigkeiten der Koregistrierung von PET und CT, Artefakte durch röntgendichte Strukturen wie Metallimplantate sowie Atmungsartefakte können die Befundung erschweren. Oftmals ist hier die zusätzliche morphologische Information aus der computertomografischen Komponente der Untersuchung hilfreich.

Kleine Herde können dem Nachweis entgehen und Hyperglykämie kann falsch negative Befunde bedingen. Einige Tumorentitäten können FDG-negativ sein, insbesondere Bronchioloalveolarzell-Karzinome, muzinöse Tumoren, neuroendokrine Karzinome, Prostatakarzinome, hepatozelluläre Karzinome, Nierenzellkarzinome und niedriggradige maligne Gliome. Für einige dieser Erkrankungen stehen spezifische PET-Tracer zur Verfügung. Optimal ist die umfassende Bewertung aller Informationen aus Anamnese, Klinik und Bildmaterial.

Abstract

FDG PET/CT is a powerful diagnostic tool in oncology evolving to the diagnostic standard. Moreover it is increasingly ordered for the evaluation of inflammations and for the detection of infectious foci. So it is important to know characteristic pitfalls when reading the images. The following article provides an overview of characteristic false positive and false negative findings. To do so we surveyed recent relevant publications. Patient examples illustrate typical findings.

Inflammations must be considered as the main differential diagnosis for increased FDG uptake. Beside this, prior treatments like chemotherapy, radiotherapy or cytokins may also cause elevated FDG uptake in lymph nodes, bone marrow or further organs. The activation of brown adipose tissue leads to increased FDG uptake. Acquisition technique and improper patient preparation include several sources of error. Misregistrations between PET and CT, artifacts from radiopaque structures like metallic implants, or breathing artifacts may hamper image interpretation. Often, additional anatomical information from the CT component of the study is helpful.

Small lesions may be missed and hyperglycemia can cause false negative findings. Several tumor entities may be FDG negative. Examples are bronchioloalveolar carcinoma, mucinous tumors, neuroendocrine tumors, prostate cancer, hepatocellular carcinoma, renal cell carcinoma as well as low-grade glioma. For some of these malgnancies, specific PET tracers are clinically available. For the best results, all available information from history taking, physical examination and imaging findings is comprehensively assessed.

 
  • Literatur

  • 1 Afshar-Oromieh A, Haberkorn U, Eder M et al. [68Ga]Gallium-labelled PSMA ligand as superior PET tracer for the diagnosis of prostate cancer: comparison with 18F-FECH. Eur J Nucl Med Mol Imaging 2012; 39: 1085-1086
  • 2 Barrington SF, Mikhaeel NG, Kostakoglu L et al. Role of imaging in the staging and response assessment of lymphoma: consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J Clin Oncol 2014; 32: 3048-3058
  • 3 Baum RP, Hellwig D, Mezzetti M. Position of nuclear medicine modalities in the diagnostic workup of cancer patients: lung cancer. Q J Nucl Med Mol Imaging 2004; 48: 119-142
  • 4 Berger KL, Nicholson SA, Dehdashti F et al. FDG PET evaluation of mucinous neoplasms: correlation of FDG uptake with histopathologic features. AJR Am J Roentgenol 2000; 174: 1005-1008
  • 5 Braun JJ, Kessler R, Constantinesco A et al. 18F-FDG PET/CT in sarcoidosis management: review and report of 20 cases. Eur J Nucl Med Mol Imaging 2008; 35: 1537-1543
  • 6 Brincker H. The sarcoidosis-lymphoma syndrome. Br J Cancer 1986; 54: 467-473
  • 7 Chang JM, Lee HJ, Goo JM et al. False positive and false negative FDG-PET scans in various thoracic diseases. Korean J Radiol 2006; 7: 57-69
  • 8 Cohade C, Osman M, Pannu HK et al. Uptake in supraclavicular area fat („USA-Fat“): description on 18F-FDG PET/CT. J Nucl Med 2003; 44: 170-176
  • 9 Cook GJ, Wegner EA, Fogelman I. Pitfalls and artifacts in 18FDG PET and PET/CT oncologic imaging. Semin Nucl Med 2004; 34: 122-133
  • 10 Crawshaw A, Kendrick YR, McMichael AJ et al. Abnormalities in iNKT cells are associated with impaired ability of monocytes to produce IL-10 and suppress T-cell proliferation in sarcoidosis. Eur J Immunol 2014; 44: 2165-2174
  • 11 Das CJ, Kumar R, Balakrishnan VB et al. Disseminated tuberculosis masquerading as metastatic breast carcinoma on PET-CT. Clin Nucl Med 2008; 33: 359-361
  • 12 Dong MJ, Lin XT, Zhao J et al. Malignant tumor with false negative 18F-FDG PET image. Zhonghua Zhong Liu Za Zhi 2006; 28: 713-717
  • 13 Esen Akkas B, Gokaslan D, Guner L et al. FDG uptake in brown adipose tissue-a brief report on brown fat with FDG uptake mechanisms and quantitative analysis using dual-time-point FDG PET/CT. Rev Esp Med Nucl 2011; 30: 14-18
  • 14 Floeth FW, Pauleit D, Sabel M et al. Prognostic value of O-(2-18F-fluoroethyl)-L-tyrosine PET and MRI in low-grade glioma. J Nucl Med 2007; 48: 519-527
  • 15 Gabriel M, Decristoforo C, Kendler D et al. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 2007; 48: 508-518
  • 16 Garcia CA, Van Nostrand D, Atkins F et al. Reduction of brown fat 2-deoxy-2-[F-18]fluoro-D-glucose uptake by controlling environmental temperature prior to positron emission tomography scan. Mol Imaging Biol 2006; 8: 24-29
  • 17 Gelfand MJ, O’Hara SM, Curtwright LA et al. Pre-medication to block [(18)F]FDG uptake in the brown adipose tissue of pediatric and adolescent patients. Pediatr Radiol 2005; 35: 984-990
  • 18 Hellwig D, Groschel A, Graeter TP et al. Diagnostic performance and prognostic impact of FDG-PET in suspected recurrence of surgically treated non-small cell lung cancer. Eur J Nucl Med Mol Imaging 2006; 33: 13-21
  • 19 Herrmann K, Lapa C, Wester HJ et al. Biodistribution and radiation dosimetry for the chemokine receptor CXCR4-targeting probe 68Ga-pentixafor. J Nucl Med 2015; 56: 410-416
  • 20 Hwang KH, Choi DJ, Lee SY et al. Evaluation of patients with hepatocellular carcinomas using [(11)C]acetate and [(18)F]FDG PET/CT: A preliminary study. Appl Radiat Isot 2009; 67: 1195-1198
  • 21 Kamel EM, Burger C, Buck A et al. Impact of metallic dental implants on CT-based attenuation correction in a combined PET/CT scanner. Eur Radiol 2003; 13: 724-728
  • 22 Kang DE, White Jr RL, Zuger JH et al. Clinical use of fluorodeoxyglucose F 18 positron emission tomography for detection of renal cell carcinoma. J Urol 2004; 171: 1806-1809
  • 23 Karantanis D, Kalkanis D, Czernin J et al. Perceived misinterpretation rates in oncologic 18F-FDG PET/CT studies: a survey of referring physicians. J Nucl Med 2014; 55: 1925-1929
  • 24 Kayani I, Conry BG, Groves AM et al. A comparison of 68Ga-DOTATATE and 18F-FDG PET/CT in pulmonary neuroendocrine tumors. J Nucl Med 2009; 50: 1927-1932
  • 25 Kong FM, Hayman JA, Griffith KA et al. Final toxicity results of a radiation-dose escalation study in patients with non-small-cell lung cancer (NSCLC): predictors for radiation pneumonitis and fibrosis. Int J Radiat Oncol Biol Phys 2006; 65: 1075-1086
  • 26 Lin CY, Chen JH, Liang JA et al. 18F-FDG PET or PET/CT for detecting extrahepatic metastases or recurrent hepatocellular carcinoma: a systematic review and meta-analysis. Eur J Radiol 2012; 81: 2417-2422
  • 27 Liu H, Pan Z, Li A et al. Roles of chemokine receptor 4 (CXCR4) and chemokine ligand 12 (CXCL12) in metastasis of hepatocellular carcinoma cells. Cell Mol Immunol 2008; 5: 373-378
  • 28 Mamede M, Higashi T, Kitaichi M et al. [18F]FDG uptake and PCNA, Glut-1, and Hexokinase-II expressions in cancers and inflammatory lesions of the lung. Neoplasia 2005; 7: 369-379
  • 29 Martinez de Llano SR, Delgado-Bolton RC, Jimenez-Vicioso A et al. Meta-analysis of the diagnostic performance of 18F-FDG PET in renal cell carcinoma. Rev Esp Med Nucl 2007; 26: 19-29
  • 30 Orava J, Nuutila P, Lidell ME et al. Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metab 2011; 14: 272-279
  • 31 Paidisetty S, Blodgett TM. Brown fat: atypical locations and appearances encountered in PET/CT. AJR Am J Roentgenol 2009; 193: 359-366
  • 32 Peungjesada S, Aloia TA, Fox P et al. (18)F-FDG uptake at the surgical margin after hepatic resection: Patterns of uptake and differential diagnosis. Eur Radiol 2015; 25: 2453-2459
  • 33 Pfannenberg AC, Aschoff P, Brechtel K et al. Value of contrast-enhanced multiphase CT in combined PET/CT protocols for oncological imaging. Br J Radiol 2007; 80: 437-445
  • 34 Prabhakar HB, Rabinowitz CB, Gibbons FK et al. Imaging features of sarcoidosis on MDCT, FDG PET, and PET/CT. AJR Am J Roentgenol 2008; 190: S1-S6
  • 35 Prasad V, Ambrosini V, Hommann M et al. Detection of unknown primary neuroendocrine tumours (CUP-NET) using (68)Ga-DOTA-NOC receptor PET/CT. Eur J Nucl Med Mol Imaging 2010; 37: 67-77
  • 36 Prosch H, Mirzaei S, Oschatz E et al. Case report: Gluteal injection site granulomas: false positive finding on FDG-PET in patients with non-small cell lung cancer. Br J Radiol 2005; 78: 758-761
  • 37 Rabkin Z, Israel O, Keidar Z. Do hyperglycemia and diabetes affect the incidence of false-negative 18F-FDG PET/CT studies in patients evaluated for infection or inflammation and cancer? A Comparative analysis. J Nucl Med 2010; 51: 1015-1020
  • 38 Rakheja R, Ciarallo A, Alabed YZ et al. Intravenous administration of diazepam significantly reduces brown fat activity on 18F-FDG PET/CT. Am J Nucl Med Mol Imaging 2011; 1: 29-35
  • 39 Rosenbaum SJ, Lind T, Antoch G et al. False-positive FDG PET uptake – the role of PET/CT. Eur Radiol 2006; 16: 1054-1065
  • 40 Sadick M, Molina F, Frey S et al. Effect of reconstruction parameters in high-definition PET/CT on assessment of lymph node metastases in head and neck squamous cell carcinoma. J Nucl Med Technol 2013; 41: 19-25
  • 41 Sathekge MM, Maes A, Pottel H et al. Dual time-point FDG PET-CT for differentiating benign from malignant solitary pulmonary nodules in a TB endemic area. S Afr Med J 2010; 100: 598-601
  • 42 Shreve PD, Steventon RS, Deters EC et al. Oncologic diagnosis with 2-[fluorine-18]fluoro-2-deoxy-D-glucose imaging: dual-head coincidence gamma camera versus positron emission tomographic scanner. Radiology 1998; 207: 431-437
  • 43 Soderlund V, Larsson SA, Jacobsson H. Reduction of FDG uptake in brown adipose tissue in clinical patients by a single dose of propranolol. Eur J Nucl Med Mol Imaging 2007; 34: 1018-1022
  • 44 Sturkenboom MG, Hoekstra OS, Postema EJ et al. A randomised controlled trial assessing the effect of oral diazepam on 18F-FDG uptake in the neck and upper chest region. Mol Imaging Biol 2009; 11: 364-368
  • 45 Sureshbabu W, Mawlawi O. PET/CT imaging artifacts. J Nucl Med Technol 2005; 33: 156-161 quiz 163-154
  • 46 Tahari AK, Lodge MA, Wahl RL. Respiratory-gated PET/CT versus delayed images for the quantitative evaluation of lower pulmonary and hepatic lesions. J Med Imaging Radiat Oncol 2014; 58: 277-282
  • 47 Tripathi M, Sharma R, D'Souza M et al. Comparative evaluation of F-18 FDOPA, F-18 FDG, and F-18 FLT-PET/CT for metabolic imaging of low grade gliomas. Clin Nucl Med 2009; 34: 878-883
  • 48 Trojan J, Schroeder O, Raedle J et al. Fluorine-18 FDG positron emission tomography for imaging of hepatocellular carcinoma. Am J Gastroenterol 1999; 94: 3314-3319
  • 49 Truong MT, Pan T, Erasmus JJ. Pitfalls in integrated CT-PET of the thorax: implications in oncologic imaging. J Thorac Imaging 2006; 21: 111-122
  • 50 Zhang L, Wang Y, Lei J et al. Dual time point 18FDG-PET/CT versus single time point 18FDG-PET/CT for the differential diagnosis of pulmonary nodules: a meta-analysis. Acta Radiol 2013; 54: 770-777
  • 51 Zhao S, Kuge Y, Tsukamoto E et al. Fluorodeoxyglucose uptake and glucose transporter expression in experimental inflammatory lesions and malignant tumours: effects of insulin and glucose loading. Nucl Med Commun 2002; 23: 545-550