J Neurol Surg A Cent Eur Neurosurg 2016; 77(02): 118-129
DOI: 10.1055/s-0035-1564051
Original Article
Georg Thieme Verlag KG Stuttgart · New York

Visual Perception in Anterior Temporal Lobectomy

Maria C. Romero
1   CIMUS, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
,
Maria Lozano
2   Department of Ophthalmology, Complejo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
,
Pilar Montes-Lourido
1   CIMUS, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
,
Maria A. Bermudez
1   CIMUS, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
,
Ana F. Vicente
1   CIMUS, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
,
Angel Prieto
3   Department of Neurosurgery, Complejo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
,
Francisco Gonzalez
1   CIMUS, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
2   Department of Ophthalmology, Complejo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
› Author Affiliations
Further Information

Publication History

04 March 2015

03 July 2015

Publication Date:
07 October 2015 (online)

Abstract

Purpose To study visual perception in patients with anterior temporal lobectomy.

Materials and Methods We explored some aspects of visual perception and compared the results obtained from 14 control subjects and 14 patients with unilateral anterior temporal lobectomy. Each group included 7 men and 7 women and the same age distribution (patients and controls: age range 27–48 years; mean 37 years). All subjects underwent a conventional ophthalmic examination and were tested for color perception, stereopsis, texture perception, face recognition, and visual illusions. To quantify color, stereoscopic, and texture perception they performed a visuomotor task that required a rapid response to a visual stimulus. Reaction times were measured under several conditions.

Results Mild visual field defects involving the superior quadrant contralateral to the lobectomy were found in five patients; two other patients presented more severe defects. Lobectomized patients showed a lower number of correct trials than normal subjects when performing tasks involving color and texture perception. These patients also had longer reaction times for color, stereoscopic, and texture stimulus detection. Face recognition and perception of illusory images were preserved after unilateral anterior temporal lobectomy.

Conclusion Our data indicate that patients with anterior temporal lobectomy show moderate deficits in color, stereo, and texture perception, with no impairment in complex visual stimuli perception.

 
  • References

  • 1 Kimura D. Right temporal-lobe damage. Perception of unfamiliar stimuli after damage. Arch Neurol 1963; 8: 264-271
  • 2 Meier MJ, French LA. Lateralized deficits in complex visual discrimination and bilateral transfer of reminiscence following unilateral temporal lobectomy. Neuropsychologia 1965; 3 (3) 261-272
  • 3 Milner B. Visual recognition and recall after right-temporal lobe excision in man. Neuropsychologia 1968; 6 (3) 191-209
  • 4 Doyon J, Milner B. Right temporal-lobe contribution to global visual processing. Neuropsychologia 1991; 29 (5) 343-360
  • 5 Gross CG. How inferior temporal cortex became a visual area. Cereb Cortex 1994; 4 (5) 455-469
  • 6 Mendola JD, Rizzo III JF, Cosgrove GR, Cole AJ, Black P, Corkin S. Visual discrimination after anterior temporal lobectomy in humans. Neurology 1999; 52 (5) 1028-1037
  • 7 Ungerleider LG, Mishkin M. Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW, eds. Analysis of Visual Behavior. Cambridge, MA: MIT Press; 1982: 549-586
  • 8 Girkin CA, Miller NR. Central disorders of vision in humans. Surv Ophthalmol 2001; 45 (5) 379-405
  • 9 Gross CG, Rocha-Miranda CE, Bender DB. Visual properties of neurons in inferotemporal cortex of the Macaque. J Neurophysiol 1972; 35 (1) 96-111
  • 10 Schwartz EL, Desimone R, Albright TD, Gross CG. Shape recognition and inferior temporal neurons. Proc Natl Acad Sci U S A 1983; 80 (18) 5776-5778
  • 11 Desimone R, Albright TD, Gross CG, Bruce C. Stimulus-selective properties of inferior temporal neurons in the macaque. J Neurosci 1984; 4 (8) 2051-2062
  • 12 Corbetta M, Miezin FM, Dobmeyer S, Shulman GL, Petersen SE. Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. J Neurosci 1991; 11 (8) 2383-2402
  • 13 Tanaka K, Saito H, Fukada Y, Moriya M. Coding visual images of objects in the inferotemporal cortex of the macaque monkey. J Neurophysiol 1991; 66 (1) 170-189
  • 14 Komatsu H, Ideura Y, Kaji S, Yamane S. Color selectivity of neurons in the inferior temporal cortex of the awake macaque monkey. J Neurosci 1992; 12 (2) 408-424
  • 15 Gulyás B, Roland PE. Processing and analysis of form, colour and binocular disparity in the human brain: functional anatomy by positron emission tomography. Eur J Neurosci 1994; 6 (12) 1811-1828
  • 16 Sáry G, Vogels R, Kovács G, Orban GA. Responses of monkey inferior temporal neurons to luminance-, motion-, and texture-defined gratings. J Neurophysiol 1995; 73 (4) 1341-1354
  • 17 Uka T, Tanaka H, Yoshiyama K, Kato M, Fujita I. Disparity selectivity of neurons in monkey inferior temporal cortex. J Neurophysiol 2000; 84 (1) 120-132
  • 18 Tanaka H, Uka T, Yoshiyama K, Kato M, Fujita I. Processing of shape defined by disparity in monkey inferior temporal cortex. J Neurophysiol 2001; 85 (2) 735-744
  • 19 Ridley RM, Ettlinger G. Visual discrimination performance in the monkey: the activity of single cells in infero-temporal cortex. Brain Res 1973; 55 (1) 179-182
  • 20 Ridley RM, Hester NS, Ettlinger G. Stimulus- and response-dependent units from the occipital and temporal lobes of the unanaesthetized monkey performing learnt visual tasks. Exp Brain Res 1977; 27 (5) 539-552
  • 21 Rolls ET, Judge SJ, Sanghera MK. Activity of neurones in the inferotemporal cortex of the alert monkey. Brain Res 1977; 130 (2) 229-238
  • 22 Gross CG, Bender DB, Gerstein GL. Activity of inferior temporal neurons in behaving monkeys. Neuropsychologia 1979; 17 (2) 215-229
  • 23 Mikami A, Kubota K. Inferotemporal neuron activities and color discrimination with delay. Brain Res 1980; 182 (1) 65-78
  • 24 Fuster JM, Jervey JP. Neuronal firing in the inferotemporal cortex of the monkey in a visual memory task. J Neurosci 1982; 2 (3) 361-375
  • 25 Richmond BJ, Wurtz RH, Sato T. Visual responses of inferior temporal neurons in awake rhesus monkey. J Neurophysiol 1983; 50 (6) 1415-1432
  • 26 Heywood CA, Gaffan D, Cowey A. Cerebral achromatopsia in monkeys. Eur J Neurosci 1995; 7 (5) 1064-1073
  • 27 Heywood C, Cowey A. With color in mind. Nat Neurosci 1998; 1 (3) 171-173
  • 28 Buckley MJ, Gaffan D, Murray EA. Functional double dissociation between two inferior temporal cortical areas: perirhinal cortex versus middle temporal gyrus. J Neurophysiol 1997; 77 (2) 587-598
  • 29 Huxlin KR, Saunders RC, Marchionini D, Pham HA, Merigan WH. Perceptual deficits after lesions of inferotemporal cortex in macaques. Cereb Cortex 2000; 10 (7) 671-683
  • 30 Meadows JC. Disturbed perception of colours associated with localized cerebral lesions. Brain 1974; 97 (4) 615-632
  • 31 Damasio A, Yamada T, Damasio H, Corbett J, McKee J. Central achromatopsia: behavioral, anatomic, and physiologic aspects. Neurology 1980; 30 (10) 1064-1071
  • 32 Beauchamp MS, Haxby JV, Jennings JE, DeYoe EA. An fMRI version of the Farnsworth-Munsell 100-Hue test reveals multiple color-selective areas in human ventral occipitotemporal cortex. Cereb Cortex 1999; 9 (3) 257-263
  • 33 Zeki S, Bartels A. The clinical and functional measurement of cortical (in)activity in the visual brain, with special reference to the two subdivisions (V4 and V4 alpha) of the human colour centre. Philos Trans R Soc Lond B Biol Sci 1999; 354 (1387) 1371-1382
  • 34 Claeys KG, Dupont P, Cornette L , et al. Color discrimination involves ventral and dorsal stream visual areas. Cereb Cortex 2004; 14 (7) 803-822
  • 35 McKeefry DJ, Zeki S. The position and topography of the human colour centre as revealed by functional magnetic resonance imaging. Brain 1997; 120 (Pt 12) 2229-2242
  • 36 Gonzalez F, Relova JL, Prieto A, Peleteiro M, Romero MC. Hemifield dependence of responses to colour in human fusiform gyrus. Vision Res 2006; 46 (16) 2499-2504
  • 37 Stasheff SF, Barton JJ. Deficits in cortical visual function. Ophthalmol Clin North Am 2001; 14 (1) 217-242 , x
  • 38 Gonzalez F, Relova JL, Prieto A, Peleteiro M. Evidence of basal temporo-occipital cortex involvement in stereoscopic vision in humans: a study with subdural electrode recordings. Cereb Cortex 2005; 15 (1) 117-122
  • 39 Janssen P, Vogels R, Orban GA. Macaque inferior temporal neurons are selective for disparity-defined three-dimensional shapes. Proc Natl Acad Sci U S A 1999; 96 (14) 8217-8222
  • 40 Janssen P, Vogels R, Orban GA. Three-dimensional shape coding in inferior temporal cortex. Neuron 2000; 27 (2) 385-397
  • 41 Uka T, Tanabe S, Watanabe M, Fujita I. Neural correlates of fine depth discrimination in monkey inferior temporal cortex. J Neurosci 2005; 25 (46) 10796-10802
  • 42 Watanabe M, Tanaka H, Uka T, Fujita I. Disparity-selective neurons in area V4 of macaque monkeys. J Neurophysiol 2002; 87 (4) 1960-1973
  • 43 Ptito A, Zatorre RJ. Impaired stereoscopic detection thresholds after left or right temporal lobectomy. Neuropsychologia 1988; 26 (4) 547-554
  • 44 Roe AW, Parker AJ, Born RT, DeAngelis GC. Disparity channels in early vision. J Neurosci 2007; 27 (44) 11820-11831
  • 45 Nguyenkim JD, DeAngelis GC. Disparity-based coding of three-dimensional surface orientation by macaque middle temporal neurons. J Neurosci 2003; 23 (18) 7117-7128
  • 46 Orban GA, Janssen P, Vogels R. Extracting 3D structure from disparity. Trends Neurosci 2006; 29 (8) 466-473
  • 47 Uka T, DeAngelis GC. Linking neural representation to function in stereoscopic depth perception: roles of the middle temporal area in coarse versus fine disparity discrimination. J Neurosci 2006; 26 (25) 6791-6802
  • 48 Iwai E, Mishkin M. Further evidence on the locus of the visual area in the temporal lobe of the monkey. Exp Neurol 1969; 25 (4) 585-594
  • 49 Cowey A, Gross CG. Effects of foveal prestriate and inferotemporal lesions on visual discrimination by rhesus monkeys. Exp Brain Res 1970; 11 (2) 128-144
  • 50 Iwai E. Neuropsychological basis of pattern vision in macaque monkeys. Vision Res 1985; 25 (3) 425-439
  • 51 Kourtzi Z, Kanwisher N. Cortical regions involved in perceiving object shape. J Neurosci 2000; 20 (9) 3310-3318
  • 52 Richmond BJ, Optican LM, Podell M, Spitzer H. Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. I. Response characteristics. J Neurophysiol 1987; 57 (1) 132-146
  • 53 Komatsu H, Ideura Y. Relationships between color, shape, and pattern selectivities of neurons in the inferior temporal cortex of the monkey. J Neurophysiol 1993; 70 (2) 677-694
  • 54 Wang Y, Fujita I, Murayama Y. Coding of visual patterns and textures in monkey inferior temporal cortex. Neuroreport 2003; 14 (3) 453-457
  • 55 Liu Y, Vogels R, Orban GA. Convergence of depth from texture and depth from disparity in macaque inferior temporal cortex. J Neurosci 2004; 24 (15) 3795-3800
  • 56 Kanwisher N, McDermott J, Chun MM. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 1997; 17 (11) 4302-4311
  • 57 Schwarzlose RF, Baker CI, Kanwisher N. Separate face and body selectivity on the fusiform gyrus. J Neurosci 2005; 25 (47) 11055-11059
  • 58 Kanwisher N, Yovel G. The fusiform face area: a cortical region specialized for the perception of faces. Philos Trans R Soc Lond B Biol Sci 2006; 361 (1476) 2109-2128
  • 59 Mendola JD, Corkin S. Visual discrimination and attention after bilateral temporal-lobe lesions: a case study. Neuropsychologia 1999; 37 (1) 91-102
  • 60 Damasio AR, Damasio H, Van Hoesen GW. Prosopagnosia: anatomic basis and behavioral mechanisms. Neurology 1982; 32 (4) 331-341
  • 61 Evans JJ, Heggs AJ, Antoun N, Hodges JR. Progressive prosopagnosia associated with selective right temporal lobe atrophy. A new syndrome?. Brain 1995; 118 (Pt 1) 1-13
  • 62 Egan RA, Shults WT, So N, Burchiel K, Kellogg JX, Salinsky M. Visual field deficits in conventional anterior temporal lobectomy versus amygdalohippocampectomy. Neurology 2000; 55 (12) 1818-1822
  • 63 Barton JJS, Hefter R, Chang B, Schomer D, Drislane F. The field defects of anterior temporal lobectomy: a quantitative reassessment of Meyer's loop. Brain 2005; 128 (Pt 9) 2123-2133
  • 64 Pathak-Ray V, Ray A, Walters R, Hatfield R. Detection of visual field defects in patients after anterior temporal lobectomy for mesial temporal sclerosis-establishing eligibility to drive. Eye (Lond) 2002; 16 (6) 744-748
  • 65 Gonzalez F, Krause F. Generation of dynamic random-element stereograms in real time with a system based on a personal computer. Med Biol Eng Comput 1994; 32 (4) 373-376
  • 66 Velhagen K, Broschman D. Manual de exploración de la visión cromática. Madrid, Spain: Editores Médicos; 1998
  • 67 Julesz B. Binocular depth perception and pattern recognition. In: Cherry C, ed. Information Theory, 4th London Symposium 1961. Butterworth: London, UK; 1991: 212-224
  • 68 Nilsson D, Malmgren K, Rydenhag B, Frisén L. Visual field defects after temporal lobectomy—comparing methods and analysing resection size. Acta Neurol Scand 2004; 110 (5) 301-307
  • 69 Winston GP, Daga P, White MJ , et al. Preventing visual field deficits from neurosurgery. Neurology 2014; 83 (7) 604-611
  • 70 Jacobson DM, Warner JJ, Ruggles KH. Transient trochlear nerve palsy following anterior temporal lobectomy for epilepsy. Neurology 1995; 45 (8) 1465-1468
  • 71 Cohen-Gadol AA, Leavitt JA, Lynch JJ, Marsh WR, Cascino GD. Prospective analysis of diplopia after anterior temporal lobectomy for mesial temporal lobe sclerosis. J Neurosurg 2003; 99 (3) 496-499
  • 72 Babb TL, Wilson CL, Crandall PH. Asymmetry and ventral course of the human geniculostriate pathway as determined by hippocampal visual evoked potentials and subsequent visual field defects after temporal lobectomy. Exp Brain Res 1982; 47 (3) 317-328
  • 73 Jensen I, Seedorff HH. Temporal lobe epilepsy and neuro-ophthalmology. Ophthalmological findings in 74 temporal lobe resected patients. Acta Ophthalmol (Copenh) 1976; 54 (6) 827-841
  • 74 Guenot M, Krolak-Salmon P, Mertens P , et al. MRI assessment of the anatomy of optic radiations after temporal lobe epilepsy surgery. Stereotact Funct Neurosurg 1999; 73 (1–4) 84-87
  • 75 Björk A, Kugelberg E. Visual field defects after temporal lobectomy. Acta Ophthalmol (Copenh) 1957; 35 (3) 210-216
  • 76 Rydenhag B, Silander HC. Complications of epilepsy surgery after 654 procedures in Sweden, September 1990–1995: a multicenter study based on the Swedish National Epilepsy Surgery Register. Neurosurgery 2001; 49 (1) 51-56 ; discussion 56–57
  • 77 Salanova V, Markand O, Worth R. Temporal lobe epilepsy surgery: outcome, complications, and late mortality rate in 215 patients. Epilepsia 2002; 43 (2) 170-174
  • 78 Falconer MA, Wilson JL. Visual field changes following anterior temporal lobectomy: their significance in relation to Meyer's loop of the optic radiation. Brain 1958; 81 (1) 1-14
  • 79 Katz A, Awad IA, Kong AK , et al. Extent of resection in temporal lobectomy for epilepsy. II. Memory changes and neurologic complications. Epilepsia 1989; 30 (6) 763-771
  • 80 Tecoma ES, Laxer KD, Barbaro NM, Plant GT. Frequency and characteristics of visual field deficits after surgery for mesial temporal sclerosis. Neurology 1993; 43 (6) 1235-1238
  • 81 Hughes TS, Abou-Khalil B, Lavin PJM, Fakhoury T, Blumenkopf B, Donahue SP. Visual field defects after temporal lobe resection: a prospective quantitative analysis. Neurology 1999; 53 (1) 167-172
  • 82 Behrens E, Schramm J, Zentner J, König R. Surgical and neurological complications in a series of 708 epilepsy surgery procedures. Neurosurgery 1997; 41 (1) 1-9 ; discussion 9–10
  • 83 Van Buren JM, Baldwin M. The architecture of the optic radiation in the temporal lobe of man. Brain 1958; 81 (1) 15-40
  • 84 Marino Jr R, Rasmussen T. Visual field changes after temporal lobectomy in man. Neurology 1968; 18 (9) 825-835
  • 85 Wong AMF, Sharpe JA. A comparison of tangent screen, Goldmann, and Humphrey perimetry in the detection and localization of occipital lesions. Ophthalmology 2000; 107 (3) 527-544
  • 86 Ptito A, Zatorre RJ, Larson WL, Tosoni C. Stereopsis after unilateral anterior temporal lobectomy. Dissociation between local and global measures. Brain 1991; 114 (Pt 3) 1323-1333
  • 87 Kwee IL, Fujii Y, Matsuzawa H, Nakada T. Perceptual processing of stereopsis in humans: high-field (3.0-tesla) functional MRI study. Neurology 1999; 53 (7) 1599-1601
  • 88 Iwami T, Nishida Y, Hayashi O , et al. Common neural processing regions for dynamic and static stereopsis in human parieto-occipital cortices. Neurosci Lett 2002; 327 (1) 29-32
  • 89 Durnford M, Kimura D. Right hemisphere specialization for depth perception reflected in visual field differences. Nature 1971; 231 (5302) 394-395
  • 90 Ptito A, Zatorre RJ, Petrides M, Frey S, Alivisatos B, Evans AC. Localization and lateralization of stereoscopic processing in the human brain. Neuroreport 1993; 4 (10) 1155-1158
  • 91 Hirsch J, DeLaPaz RL, Relkin NR , et al. Illusory contours activate specific regions in human visual cortex: evidence from functional magnetic resonance imaging. Proc Natl Acad Sci U S A 1995; 92 (14) 6469-6473
  • 92 Taira M, Nose I, Inoue K, Tsutsui K. Cortical areas related to attention to 3D surface structures based on shading: an fMRI study. Neuroimage 2001; 14 (5) 959-966
  • 93 Nishida Y, Hayashi O, Iwami T , et al. Stereopsis-processing regions in the human parieto-occipital cortex. Neuroreport 2001; 12 (10) 2259-2263
  • 94 Baecke S, Lützkendorf R, Tempelmann C , et al. Event-related functional magnetic resonance imaging (efMRI) of depth-by-disparity perception: additional evidence for right-hemispheric lateralization. Exp Brain Res 2009; 196 (3) 453-458
  • 95 Gazzaniga MS, Bogen JE, Sperry RW. Observations on visual perception after disconnexion of the cerebral hemispheres in man. Brain 1965; 88 (2) 221-236
  • 96 Kanwisher N, Chun MM, McDermott J, Ledden PJ. Functional imaging of human visual recognition. Brain Res Cogn Brain Res 1996; 5 (1–2) 55-67
  • 97 Puce A, Allison T, Asgari M, Gore JC, McCarthy G. Differential sensitivity of human visual cortex to faces, letterstrings, and textures: a functional magnetic resonance imaging study. J Neurosci 1996; 16 (16) 5205-5215
  • 98 McCarthy G, Puce A, Belger A, Allison T. Electrophysiological studies of human face perception. II: Response properties of face-specific potentials generated in occipitotemporal cortex. Cereb Cortex 1999; 9 (5) 431-444
  • 99 Ishai A, Ungerleider LG, Martin A, Schouten JL, Haxby JV. Distributed representation of objects in the human ventral visual pathway. Proc Natl Acad Sci U S A 1999; 96 (16) 9379-9384
  • 100 Bermudez MA, Vicente AF, Romero MC, Perez R, Gonzalez F. Spatial frequency components influence cell activity in the inferotemporal cortex. Vis Neurosci 2009; 26 (4) 421-428
  • 101 Kiani R, Esteky H, Tanaka K. Differences in onset latency of macaque inferotemporal neural responses to primate and non-primate faces. J Neurophysiol 2005; 94 (2) 1587-1596
  • 102 Fried I, MacDonald KA, Wilson CL. Single neuron activity in human hippocampus and amygdala during recognition of faces and objects. Neuron 1997; 18 (5) 753-765
  • 103 Quiroga RQ. Concept cells: the building blocks of declarative memory functions. Nat Rev Neurosci 2012; 13 (8) 587-597
  • 104 Grosof DH, Shapley RM, Hawken MJ. Macaque V1 neurons can signal ‘illusory’ contours. Nature 1993; 365 (6446) 550-552
  • 105 Lee TS, Nguyen M. Dynamics of subjective contour formation in the early visual cortex. Proc Natl Acad Sci U S A 2001; 98 (4) 1907-1911
  • 106 Grabowska A, Szymanska O, Nowicka A, Kwiecein M. The effect of unilateral brain lesions on perception of visual illusions. Behav Brain Res 1992; 47 (2) 191-197
  • 107 Winston GP, Stretton J, Sdhu MK , et al. Progressive white matter changes following anterior temporal lobe resection for epilepsy. Neuroimage Clin 2014; 4: 190-200
  • 108 Martin RC, Meador KJ, Loring DW. Differential effects of unilateral temporal lobectomy on visuospatial memory and attention. J Clin Exp Neuropsychol 1991; 13 (6) 965-971