Synlett 2016; 27(17): 2500-2504
DOI: 10.1055/s-0035-1562603
letter
© Georg Thieme Verlag Stuttgart · New York

Ruthenium-Free Preparation of 1,5-Disubstituted Triazoles by Alkylative Debenzylation of 1,4-Disubstituted Triazoles

Philip C. Bulman Page*
a   School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK   Email: p.page@uea.ac.uk
,
G. Richard Stephenson*
a   School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK   Email: p.page@uea.ac.uk
,
James Harvey
a   School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK   Email: p.page@uea.ac.uk
,
Alexandra M. Z. Slawin
b   Molecular Structure Laboratory, School of Chemistry, University of St Andrews, Purdie Building, St. Andrews, Fife KY16 9ST, Scotland
› Author Affiliations
Further Information

Publication History

Received: 15 May 2016

Accepted after revision: 29 June 2016

Publication Date:
01 August 2016 (online)


Abstract

A method that cleanly converts the 1,4-disubstituted 1,2,3-triazole products of the copper-catalyzed ‘click’ dipolar cycloaddition reaction of benzyl azide with terminal alkynes into 1,5-disubstituted triazoles is described. Selective N-alkylation of 1,4-disubstituted 1,2,3-triazoles under microwave irradiation is followed by debenzylation of the resulting 1,3,4-trisubstituted triazolium cations by treatment with potassium tert-butoxide.

Supporting Information

 
  • References and Notes

  • 1 Tornøe CW, Meldal M In Peptides: The Wave of the Future, American Peptide Symposia. Vol. 7. Kluwer Academic; San Diego: 2001: 263-264
  • 2 Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596
  • 3 Tornøe CW, Christensen C, Meldal M. J. Org. Chem. 2002; 67: 3057
    • 4a Such GK, Johnston AP. R, Liang K, Caruso F. Prog. Polym. Sci. 2012; 37: 985
    • 4b Binder WH, Sachsenhofer R. Macromol. Rapid Commun. 2007; 28: 15

      See, for example:
    • 5a Bock VD, Hiemstra H, Van Maarseveen JH. Eur. J. Org. Chem. 2006; 51
    • 5b Yang J, Ye T, Ma D, Zhang Q. Synth. Met. 2011; 161: 330
    • 5c Johansson H, Pedersen DS. Eur. J. Org. Chem. 2012; 4267
  • 6 Crowley JD, McMorran DA. Top. Heterocycl. Chem. 2012; 28: 31
  • 7 Chuprakov S, Kwok SW, Zhang L, Lercher L, Fokin VV. J. Am Chem. Soc. 2009; 131: 18034
  • 8 Agalave SG. Maujan S. R, Pore VS. Chem. Asian J. 2011; 6: 2696
  • 9 Lima-Neto RG, Cavalcante NN. M, Srivastava RM, Mendonça FJ. B. Jr, Wanderley AG, Neves RP, Dos Anjos JV. Molecules 2012; 17: 5882
  • 10 Millward SW, Agnew HD, Lai B, Lee SS, Lim J, Nag A, Pitram S, Rohde R, Heath JR. Integr. Biol. 2013; 5: 87
  • 11 Tullis JS, VanRens JC, Natchus MG, Clark MP, De B, Hsieh LC, Janusz MJ. Bioorg. Med. Chem. Lett. 2003; 13: 1665
  • 12 Monceaux CJ, Hirata-Fukae C, Lam PC.-H, Totrov MM, Matsuoka Y, Carlier PR. Bioorg. Med. Chem. Lett. 2011; 21: 3992
  • 13 Khan SS, Hanelt S, Liebscher J. ARKIVOC 2009; (xii): 193
    • 14a Miura T, Yamauchi M, Murakami M. Chem. Commun. 2009; 1470
    • 14b Chattopadhyay B, Gevorgyan V. Org. Lett. 2011; 13: 3746
    • 15a Horneff T, Chuprakov S, Chernyak N, Gevorgyan V, Fokin VV. J. Am. Chem. Soc. 2008; 130: 14972
    • 15b Chuprakov S, Kwok SW, Fokin VV. J. Am. Chem. Soc. 2013; 135: 4652
    • 16a Zhang L, Chen X, Xue P, Sun HH. Y, Williams ID, Sharpless KB, Fokin VV, Jia G. J. Am. Chem. Soc. 2005; 127: 15998
    • 16b Johansson J, Lincoln P, Nordén B, Kann N. J. Org. Chem. 2011; 76: 2355

      The 1,5 regioisomer can also be accessed from alkynyl Grignard reagents:
    • 17a Krasiński A, Fokin VV, Sharpless KB. Org. Lett. 2004; 6: 1237

    • Under base-catalyzed conditions:
    • 17b Kwok SK, Fotsing JR, Fraser RJ, Rodionov VO, Fokin VV. Org. Lett. 2010; 12: 4217

    • Using sulfonyl azides:
    • 17c Meza-Aviña ME, Patel MK, Lee CB, Dietz TJ, Croatt MP. Org. Lett. 2011; 13: 2984

    • Rare-earth-metal catalysis:
    • 17d Hong L, Lin W, Zhang F, Liua R, Zhou X. Chem. Commun. 2013; 49: 5589

    • Palladium catalysis:
    • 17e Chuprakov S, Chernyak N, Dudnik A, Gevorgyan V. Org. Lett. 2007; 9: 2333

    • Metal-free:
    • 17f Kloss F, Köhn U, Jahn BO, Hager MD, Görls H, Schubert US. Chem. Asian J. 2011; 6: 2816

    • Review:
    • 17g Lima CG. S, Ali A, van Berkel SS, Westermann B, Paixão MW. Chem. Commun. 2015; 51: 10784

    • From azide-β-ketophosphonate cycloaddition:
    • 17h González-Calderón D, Fuentes-Benítes A, Díaz-Torres E, González-González CA, González-Romero C. Eur. J. Org. Chem. 2016; 668

    • From azide-vinyl bromide cycloaddition:
    • 17i Wu L, Chen Y, Luo J, Sun Q, Peng M, Lin O. Tetrahedron Lett. 2014; 55: 3847
  • 18 Appukkuttan P, Dehaen W, Fokin VV, Van der Eycken E. Org. Lett. 2004; 6: 4223
  • 19 Kacprzak K. Synlett 2005; 943
  • 20 Hanelt S, Liebscher J. Synlett 2008; 1058
  • 21 N-Alkylation of 1,4-substituted 1,2,3-triazoles with alkyl halides always occurs on N-3: Gompper R. Chem. Ber. 1957; 90: 374
  • 22 Mathew P, Neels A, Albrecht N. J. Am. Chem. Soc. 2008; 130: 13534
  • 23 C17H18IN3, M = 391.25, monoclinic, space group P21/c, a = 17.436(4), b = 7.723(2), c = 12.207(3) Å, V = 1628.2(6) Å3, Z = 4, μ (Mo Kα) = 0.71075, 9847 independent reflections, (Rint = 0.0594), R1[I > 2σ(I)] = 0.0376, wR2 (all reflections) = 0.0874. CCDC 1479260 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 24 For 1, the triazole proton is at δ = 7.66 ppm in the 1H NMR spectrum, and moves to δ = 9.33 ppm in the triazolium salt 2. Similar chemical shift changes have been previously observed in related structures; see for example: Saravanakumar R, Ramkumar V, Sankararaman S. Organometallics 2011; 30: 1689
  • 25 Koguchi S, Izawa K. Synthesis 2012; 44: 3603
  • 26 Stephenson GR, Buttress JP, Deschamps D, Lancelot M, Martin JP, Sheldon AI. G, Alayrac C, Gaumont AC, Page PC. B. Synlett 2013; 24: 2723
  • 27 Krapcho AP, Ciganek E In Organic Reactions . John Wiley and Sons; Hoboken: 2013: 1-536
  • 28 General Procedure for the Formation of the Triazolium Salts from 1-Benzyl-4-phenyl 1,2,3-Triazoles 1-Benzyl-4-phenyl 1,2,3-triazole was dissolved in MeCN in a microwave vial, and the alkyl halide (5 equiv) was added. The reaction was irradiated in the microwave instrument for 3 h at 100 °C. Solvents were removed under reduced pressure to yield the triazolium salt. 1-Benzyl-3-methyl-4-phenyl-1H-1,2,3-triazolium Iodide (2) Prepared according to the general procedure from 1 (1.66 g, 7.07 mmol) and MeI (1.73 mL, 4.98 g, 35.10 mmol). Compound 2 was isolated as a pale yellow solid (2.79 g, 93%), mp 133–135 °C. IR (neat): 3467, 3040, 1611, 1493, 1455, 1155, 768, 746, 699 cm–1. 1H NMR (400 MHz, CDCl3): δ = 9.33 (s, 1 H), 7.69–7.60 (m, 4 H), 7.54–7.40 (m, 3 H), 7.37–7.33 (m, 3 H), 5.97 (s, 2 H), 4.26 (s, 3 H).13C NMR (126 MHz, CDCl3): δ = 143.2, 132.2, 131.4, 130.1, 130.1, 129.8, 129.7, 129.6, 129.4, 121.7, 57.6, 39.6. General Procedure for the Debenzylation of Triazolium Salts Using t-BuOK 1-Benzyl-3-alkyl-4-phenyl triazolium iodide was dissolved in THF, and the solution cooled to 0 °C. t-BuOK (2.5 equiv) was added, and the reaction stirred overnight. H2O was added, and the mixture was stirred for 30 min and filtered through Celite. The solution was extracted using EtOAc, and the solvents were removed under reduced pressure to give the desired 1,5-disubstituted triazole. 1-Methyl-5-phenyl-1H-1,2,3-triazole (6) Prepared according to the general procedure from 2 (0.78 g, 2.05 mmol), and t-BuOK (0.61 g, 5.46 mmol) was dissolved in THF (45 mL). The crude product was purified by column chromatography, eluting with EtOAC–petroleum ether (1:1), yielding the titled compound 6 as an orange oil (0.31 g, 93%). IR (neat): 3060, 3030, 2953, 1732, 1484, 1454, 1245, 767 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.73 (s, 1 H), 7.57–7.45 (m, 3 H), 7.45–7.35 (m, 2 H), 4.08 (s, 3 H). 13C NMR (126 MHz, CDCl3): δ = 129.3, 128.7, 127.1, 35.7, 14.3 (quaternary signals not observed).