Synthesis 2016; 48(20): 3459-3469
DOI: 10.1055/s-0035-1562554
short review
© Georg Thieme Verlag Stuttgart · New York

Tandem Sequences Involving Michael Additions and Sigmatropic Rearrangements

David Serrano-Molina
Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain   eMail: martin.castro@uam.es
,
Ana M. Martín-Castro*
Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain   eMail: martin.castro@uam.es
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 04. April 2016

Accepted after revision: 09. Juni 2016

Publikationsdatum:
28. Juli 2016 (online)


Abstract

Claisen and related [3,3]-sigmatropic rearrangements have been well described as useful synthetic organic tools. Frequently, the [3,3]-sigmatropic rearrangements are combined with other reactions in a tandem sequence leading to the formation of several bonds in only one synthetic step. This review presents the most relevant advances in tandem sequences combining a conjugate Michael-type addition and a [3,3]-sigmatropic rearrangement. Relevant examples of the use of different types of nucleophiles initiating the tandem sequences, along with detailed commentary illustrating the use of the title sequences in the preparation of synthetically useful building blocks, are presented. Examples of catalytic methodologies based on these tandem sequences are also provided. Finally, the asymmetric version of an inverse tandem [3,3]-rearrangement/Michael addition sequence oriented to the synthesis of optically active γ-substituted δ-amino acids is detailed.

1 Introduction

2 Michael Addition/[3,3]-Rearrangement Sequences

2.1 C-Nucleophiles

2.2 N-Nucleophiles

2.3 P-Nucleophiles

2.4 O-Nucleophiles

3 [3,3]-Rearrangement/Michael Addition Sequences

4 Conclusion

 
  • References

    • 1a Hiratani K, Albrecht M. Chem. Soc. Rev. 2008; 37: 2413
    • 1b Ilardi EA, Stivala CE, Zakarian A. Chem. Soc. Rev. 2009; 38: 3133
    • 1c Jones AC, May JA, Sarpong R, Stoltz BM. Angew. Chem. Int. Ed. 2014; 53: 2556
  • 2 Aoki Y, Kuwajima I. Tetrahedron Lett. 1990; 31: 7457
    • 3a Eriksson M, Nilsson M, Olsson T. Synlett 1994; 271
    • 3b Eriksson M, Hjelmencrantz A, Nilsson M, Olsson T. Tetrahedron 1995; 51: 12631
  • 4 Becker M, Krause N. Liebigs Ann/Recl. 1997; 725
  • 5 Bausch CC, Johnson JS. J. Org. Chem. 2008; 73: 1575
  • 6 Yamazaki T, Shinohara N, Kitazume T, Sato S. J. Org. Chem. 1995; 60: 8140
  • 7 Schmidt C, Kazmaier U. Org. Biomol. Chem. 2008; 6: 4643
  • 8 Majetich G, Hull K. Tetrahedron Lett. 1988; 29: 2773
  • 9 Takai K, Ueda T, Kaihara H, Sunami Y, Moriwake T. J. Org. Chem. 1996; 61: 8728
  • 10 Schwan AL, Warkentin J. Can. J. Chem. 1988; 66: 1686
  • 11 Vedejs E, Gingras M. J. Am. Chem. Soc. 1994; 116: 579
  • 12 Weng J, Chen Y, Yue B, Xu M, Jin H. Eur. J. Org. Chem. 2015; 3164
  • 13 Li Y, Wang Q, Goeke A, Fráter G. Synlett 2007; 288
  • 14 Li Y, Goeke A, Wang R, Wang Q, Fráter G. Tetrahedron 2007; 63: 9605
  • 15 Chong Q, Xin X, Wang C, Wu F, Shi J, Wan B. J. Org. Chem. 2014; 79: 2105
  • 16 Rogakos V, Georgiadis D, Dive V, Yiotakis A. Org. Lett. 2009; 11: 4696
  • 17 Hanamoto T, Baba Y, Inanaga J. J. Org. Chem. 1993; 58: 299
    • 18a Blechert S. Tetrahedron Lett. 1984; 25: 1547
    • 18b Blechert S. Helv. Chim. Acta 1985; 68: 1835
  • 19 Toyota M, Fukumoto K. J. Chem. Soc., Perkin Trans. 1 1992; 547
  • 20 Wang X, Cheng G, Cui X. Chem. Commun. 2014; 50: 652
    • 21a Garrido NM, Garcia M, Diez D, Sanchez MR, Sanz F, Urones JG. Org. Lett. 2008; 10: 1687
    • 21b Garrido NM, Garcia M, Sanchez MR, Diez D, Urones JG. Synlett 2010; 387
  • 22 Garrido NM, Sanchez MR, Diez D, Sanz F, Urones JG. Tetrahedron: Asymmetry 2011; 22: 872