Synlett 2016; 27(18): 2621-2625
DOI: 10.1055/s-0035-1562537
letter
© Georg Thieme Verlag Stuttgart · New York

Ruthenium-Catalyzed Intramolecular Cyclization and Fluorination to Form 3-Fluorooxindoles

Na Liu
a   State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou. 730000, P. R. of China   Email: yangshd@lzu.edu.cn
,
Qiu-Ping Tian
a   State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou. 730000, P. R. of China   Email: yangshd@lzu.edu.cn
,
Qiang Yang
a   State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou. 730000, P. R. of China   Email: yangshd@lzu.edu.cn
,
Shang-Dong Yang*
a   State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou. 730000, P. R. of China   Email: yangshd@lzu.edu.cn
b   State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Lanzhou 730000, P. R. of China
› Author Affiliations
Further Information

Publication History

Received: 18 May 2016

Accepted after revision: 23 July 2016

Publication Date:
10 August 2016 (online)


Abstract

We have developed a new and simple method for the preparation of 3-fluorooxindoles via synergetic cyclization and fluorination of α-diazoacetamides in the presence of [Ru(p-cymene)Cl2]2 under mild conditions. Two-step tandem processes include intramolecular cyclization followed by electrophilic fluorination with Selectfluor in one-pot.

Supporting Information

 
  • References and Notes

    • 1a Biomedical Frontiers of Fluorine Chemistry, ACS Symposium Series 639. Ojima I, McCarthy JR, Welch JT. American Chemical Society; Washington DC: 1996
    • 1b Uneyama K. Enantiocontrolled Synthesis of Fluoro-Organic Compounds . Soloshonok VA. Wiley; Chichester: 1999
    • 1c Hiyama T. Organofluorine Compounds: Chemistry and Applications. Springer; Berlin: 2000
    • 1d Kirsch P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications. Wiley-VCH; Weinheim: 2004
    • 1e Ismail FM. D. J. Fluorine Chem. 2002; 118: 27
    • 1f Isanbor C, O'Hagan D. J. Fluorine Chem. 2006; 127: 303
    • 1g Kirk KL. J. Fluorine Chem. 2006; 127: 1013
    • 2a Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 2b Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 2c Jeschke P. ChemBioChem 2004; 5: 570
    • 2d Hung MH, Farnham WB, Feiring AE, Rozen S In Fluoropolymers: Synthesis . Vol. 1. Hougham G, Cassidy PE, Johns K, Davidson T. Plenum Press; New York: 1999: 51
    • 3a Petrov AV. Fluorinated Heterocyclic Compounds: Synthesis, Chemistry, and Applications. John Wiley and Sons; New York: 2009
    • 3b Liu P, Sharon A, Chu CK. J. Fluorine Chem. 2008; 129: 743
    • 3c Park BK, Kitteringham NR, O’Neill PM. Annu. Rev. Pharmacol. Toxicol. 2001; 41: 443
  • 4 Deng Q.-H, Wadepohl H, Gade LH. Chem. Eur. J. 2011; 17: 14922
    • 5a Hewawasam P, Gribkoff VK, Pendri Y, Dworetzky SI, Meanwell NA, Martinez E, Boissard CG, Post-Munson DJ, Trojnacki JT, Yeleswaram K, Pajor LM, Knipe J, Gao Q, Perrone R, Starrett JE. Bioorg. Med. Chem. Lett. 2002; 12: 1023
    • 5b Gribkoff VK, Starrett JE, Dworetzky SI, Hewawasam P, Boissard CG, Cook DA, Frantz SW, Heman K, Hibbard JR, Huston K, Johnson G, Krishnan BS, Kinney GG, Lombardo LA, Meanwell NA, Molinoff PB, Myers RA, Moon SL, Ortiz A, Pajor L, Pieschl RL, Post-Munson DJ, Signor LJ, Srinivas N, Taber MT, Thalody G, Trojnacki JT, Wiener H, Yeleswaram K, Yeola SW. Nat. Med. 2001; 7: 471
    • 6a Hou Y.-K, Higashiya S, Fuchigami T. J. Org. Chem. 1997; 62: 8773
    • 6b Takeuchi Y, Tarui T, Shibata N. Org. Lett. 2000; 2: 639
    • 6c Shibata N, Tarui T, Doi Y, Kirk KL. Angew. Chem. Int. Ed. 2001; 40: 4461
    • 6d Singh RP, Majumder U, Shreeve JM. J. Org. Chem. 2001; 66: 6263
    • 6e Baudoux J, Salit A.-F, Cahard D, Plaquevent J.-C. Tetrahedron Lett. 2002; 43: 6573
    • 6f Hamashima Y, Suzuki T, Takano H, Shimura Y, Sodeoka M. J. Am. Chem. Soc. 2005; 127: 10164
    • 6g Fujiwara T, Yin B, Jin M, Kirk KL, Takeuchi Y. J. Fluorine Chem. 2008; 129: 829
    • 6h Ishimaru T, Shibata N, Horikawa T, Yasuda N, Nakamura S, Toru T, Shiro M. Angew. Chem. Int. Ed. 2008; 47: 4157
    • 6i Seki T, Fujiwara T, Takeuchi Y. J. Fluorine Chem. 2011; 132: 181
    • 6j Lim YH, Ong Q.-X, Duong HA, Nguyen TM, Johannes CW. Org. Lett. 2012; 14: 5676
    • 6k Zhang Y, Yang X.-J, Xie T, Chen G.-L, Zhu W.-H, Zhang X.-Q, Yang X.-Y, Wu X.-Y, He X.-P, He H.-M. Tetrahedron 2013; 69: 4933
    • 6l Gu X, Zhang Y, Xu Z.-J, Che C.-M. Chem. Commun. 2014; 50: 7870
    • 6m Wang F.-J, Li J.-L, Hu Q.-Y, Wu X.-Y, He H.-M, Yang X.-J. Eur. J. Org. Chem. 2014; 3607
    • 6n Zhu W.-H, Hu X.-H, Wang F.-J, Yang X.-J, Wu X.-Y. Chin. J. Chem. 2015; 33: 220
    • 6o Chen G, Song J.-S, Yu Y.-H, Luo X.-S, Li C.-S, Huang X.-L. Chem. Sci. 2016; 7: 1786
    • 7a Zhu J.-M, Zhang W, Zhang L.-J, Liu J, Zheng J, Hu J.-B. J. Org. Chem. 2010; 75: 5505
    • 7b Shi S.-L, Buchwald SL. Angew. Chem. Int. Ed. 2015; 54: 1646
  • 8 Wu L.-L, Falivene L, Drinkel E, Grant S, Linden A, Cavallo L, Dorta R. Angew. Chem. Int. Ed. 2012; 51: 2870
    • 9a Arcadi A, Pietropaolo E, Alvino A, Michelet V. Org. Lett. 2013; 15: 2766
    • 9b Yang L, Ma Y.-H, Song F.-J, You J.-S. Chem. Commun. 2014; 50: 3024
    • 9c Xu X, Wang X, Dong K, Zhang C, Qiu L. CN 105439937A, 2016
    • 10a Doyle MP, Shanklin MS, Pho HQ, Mahapatro SN. J. Org. Chem. 1988; 53: 1017
    • 10b Etkin N, Babu SD, Fooks CJ, Durst T. J. Org. Chem. 1990; 55: 1093
    • 10c Miah S, Slawin AM. Z, Moody CJ, Sheehan SM, Marino JP. Jr, Semones MA, Padwa A, Richards IC. Tetrahedron 1996; 52: 2489
    • 10d Wang H.-L, Li Z, Wang G.-W, Yang S.-D. Chem. Commun. 2011; 47: 11336
    • 10e Chan W.-W, Yeung S.-H, Zhou Z.-Y, Chan AS. C, Yu W.-Y. Org. Lett. 2010; 12: 604
    • 10f Chan W.-W, Kwong T.-L, Yu W.-Y. Org. Biomol. Chem. 2012; 10: 3749
  • 11 Xia X.-D, Ren Y.-L, Chen J.-R, Yu X.-L, Lu L.-Q, Zou J.-Q, Wan J, Xiao W.-J. Chem. Asian J. 2015; 10: 124
  • 12 Kischkewitz M, Daniliuc C.-G, Studer A. Org. Lett. 2016; 18: 1206
    • 13a Li Z, Wang Z, Zhu L, Tan X, Li C. J. Am. Chem. Soc. 2014; 136: 16439
    • 13b Zhang C, Li Z, Zhu L, Yu L, Wang Z, Li C. J. Am. Chem. Soc. 2013; 135: 14082
    • 13c Yang Q, Mao L.-L, Yang B, Yang S.-D. Org. Lett. 2014; 16: 3460
  • 14 Typical Procedure of Ruthenium-Catalyzed Intramolecular Cyclization and Fluorination to Form 3-Fluorooxindoles The flame-dried round-bottomed flask was charged with Ru(p-cymene)Cl2]2 (6.2 mg, 2.5 mol%), Selecfluor (0.48 mmol, 1.2 equiv), and α-diazoacetamide 1a (0.4 mmol), and then was sealed. The flask was evacuated and backfilled with argon three times. Dry xylene (4 mL) and water (144 μL, 20 equiv) were added using a syringe. The mixture was stirred at 40 °C until the substrate disappeared as judged by TLC. After cooling to room temperature, the crude mixture was poured into water (20 mL). The residue was extracted with EtOAc and dried over Na2SO4. After filtration and evaporation in vacuo, the residue was purified by flash chromatography on silica gel (PE–EtOAc = 20:1) to give 2a as white solid (67.6 mg, 89%). 1H NMR (400 MHz, CDCl3): δ = 7.62 (dd, J = 7.5, 1.7 Hz, 1 H), 7.56 (t, J = 7.9 Hz, 1 H), 7.24 (t, J = 7.6 Hz, 1 H), 6.95 (d, J = 7.9 Hz, 1 H), 3.26 (s, 3 H). 19F NMR (376 MHz, CDCl3): δ = –152.56. 13C NMR (100 MHz, CDCl3): δ = 164.6 (d, J = 22.0 Hz), 144.3 (d, J = 4.7 Hz), 134.1 (d, J = 3.4 Hz), 126.2, 124.4 (d, J = 2.9 Hz), 120.3 (d, J = 20.1 Hz), 112.8 (d, J = 41.0 Hz), 109.9 (d, J = 1.5 Hz), 81.6 (d, J = 196.5 Hz), 27.0. ESI-MS: m/z [M + H]+ = 191.0.
    • 15a Lebel H, Marcoux J.-F, Molinaro C, Charette AB. Chem. Rev. 2003; 103: 977
    • 15b Ye T, McKervey MA. Chem. Rev. 1994; 94: 1091