Synthesis 2016; 48(20): 3504-3508
DOI: 10.1055/s-0035-1562484
psp
© Georg Thieme Verlag Stuttgart · New York

Efficient Microwave-Assisted Synthesis of Methyl 4- or 5-Nitro­anthranilate

Julien Godeau
a  Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
,
Anthony Martinet
b  Anton Paar France S.A.S.Parc Victoria, Immeuble Le Toronto ZA de Courtaboeuf 12 avenue de Scandinavie 91940 Les Ulis, France   Email: thierry.besson@univ-rouen.fr
,
Vincent Levacher
a  Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
,
Corinne Fruit
a  Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
,
Thierry Besson*
a  Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
› Author Affiliations
Further Information

Publication History

Received: 20 May 2016

Accepted after revision: 02 July 2016

Publication Date:
11 August 2016 (online)


Abstract

A novel method for the synthesis of anthranilate esters is described. The esterification reaction of nitro-substituted anthranilic acids was carried out under microwave irradiation. A range of solvents and other reaction parameters were investigated to provide the most environmentally friendly reaction conditions. The feasibility of scale-up was demonstrated, allowing a simple and inexpensive production of anthranilate esters.

 
  • References

  • 1 Yadav GD, Krishnan MS. Org. Process Res. Dev. 1998; 2: 86 ; and references cited therein
  • 2 Bedoukian PZ. Perfumery and Flavouring Synthesis . 3rd ed. Allured Publishing Corp; Wheaton IL: 1986
  • 3 Tiwari VK, Kale RR, Mishra BB, Singh A. ARKIVOC 2008; (xiv): 27
  • 4 Pettersson B, Bergman J, Svensson Per H. Tetrahedron 2013; 69: 2647
  • 5 Ma Z.-Z, Hano Y, Nomura T, Chen Y.-J. Heterocycles 1997; 46: 541
    • 6a Godeau J, Harari M, Laclef S, Deau E, Fruit C, Besson T. Eur. J. Org. Chem. 2015; 7705
    • 6b Laclef S, Harari M, Godeau J, Schmitz-Afonso I, Bischoff L, Hoarau C, Levacher V, Fruit C, Besson T. Org. Lett. 2015; 17: 1700
  • 7 Qiu L, Wang X, Zhao N, Xu S, An Z, Zhuang X, Lan Z, Wen L, Wan X. J. Org. Chem. 2014; 79: 11393
    • 8a Hédou D, Harari M, Godeau J, Dubouilh-Benard C, Fruit C, Besson T. Tetrahedron Lett. 2015; 56: 4088
    • 8b Hédou D, Deau E, Harari M, Sanselme M, Fruit C, Besson T. Tetrahedron 2014; 70: 5541
    • 8c Hédou D, Guillon R, Lecointe C, Logé C, Chosson E, Besson T. Tetrahedron 2013; 69: 3182
    • 9a Hédou D, Deau E, Dubouilh-Benard C, Sanselme M, Martinet A, Chosson E, Levacher V, Besson T. Eur. J. Org. Chem. 2013; 7533
    • 9b Deau E, Hédou D, Chosson E, Levacher V, Besson T. Tetrahedron Lett. 2013; 54: 3518
    • 10a Hédou D, Dubouilh-Benard C, Loaëc N, Meijer L, Fruit C, Besson T. Molecules 2016; 21: 794
    • 10b Hédou D, Godeau J, Loaëc N, Meijer L, Fruit C, Besson T. Molecules 2016; 21: 578
    • 11a Besson T, Chosson E. Comb. Chem. High Throughput Screening 2007; 10: 903
    • 11b Alexandre FR, Domon L, Frère S, Testard A, Thiéry V, Besson T. Mol. Diversity 2003; 7: 273
  • 12 Yadav GD, Mehta P. Ind. Eng. Chem. Res. 1994; 33: 2198 ; and references cited therein
  • 13 Stahl SS, Powell AB. Org. Lett. 2013; 15: 5072
  • 14 Taillefer M, Xia N. PCT. Int. Appl WO 2009050366, 2009
  • 15 Cheng Y.-D, Hwang T.-L, Wang H.-H, Pan T.-L, Wu C.-C, Chang W.-Y, Liu Y.-T, Chu T.-C, Hsieh P.-W. Org. Biomol. Chem. 2011; 9: 7113
    • 16a Hosangadi BD, Dave RH. Tetrahedron Lett. 1996; 37: 6375
    • 16b Hinsberger S, Hüsecken K, Groh M, Negri M, Haupenthal J, Hartmann RW. J. Med. Chem. 2013; 56: 8332
  • 17 Yadav GD, Krishnan MS. Org. Process Res. Dev. 1998; 2: 86
  • 18 Rekha VV, Ramani MV, Ratnamala A, Rupakalpana V, Subbaraju GV, Satyanarayana C, Rao CS. Org. Process Res. Dev. 2009; 13: 769
  • 19 Tundo P, Selva M. Acc. Chem. Res. 2002; 35: 706
  • 20 Suresh Babu CV, Divakar S. J. Am. Oil Chem. Soc. 2001; 78: 49
    • 21a Prat D, Wells A, Hayler J, Sneddon H, McElroy CR, Abou-Shehadad S, Dunne PJ. Green Chem. 2015; 17: 4848
    • 21b Henderson RK, Jimenez-Gonzalez C, Constable DJ. C, Alston SR, Inglis GG. A, Fisher G, Sherwood J, Binks SP, Curzons AD. Green Chem. 2011; 13: 854
    • 21c Capello C, Fischer U, Hungerbühler K. Green Chem. 2007; 9: 927
  • 22 Complete description (technical aspects and procedures) of both types of microwave reactors used for this study is available in this article: Dallinger D, Lehmann H, Moseley JD, Stadler A, Oliver Kappe C. Org. Process Res. Dev. 2011; 15: 841
  • 23 The lost dissipation factor (tan δ) expresses the capacity of a molecule or a material to transform electromagnetic energy into heat at a given frequency and temperature. A very high susceptibility to microwaves at the standard operating frequency (2.45 GHz) is characterised by a high value (>0.5) of tan δ, a medium interaction by intermediate values (tan δ 0.1–0.5), and tan δ < 0.1 for a low microwave absorbing material. For more details, see: Gabriel C, Gabriel S, Grant EH, Halstead BS. J, Mingos DM. P. Chem. Soc. Rev. 1998; 27: 213
  • 24 For a previous example on the use of the Masterwave BTR (Anton Paar) for the scale-up of a Ni-catalysed cross-coupling reaction, see: Baghbanzadeh M, Pilger C, Kappe CO. J. Org. Chem. 2011; 76: 1507
  • 25 Fu Y, Zhu H, Shen J. Thermochim. Acta 2005; 434: 88
  • 26 Ashcroft CP, Dunn PJ, Hayler JD, Wells AS. Org. Process Res. Dev. 2015; 19: 740
    • 27a Loidreau Y, Melissen S, Levacher V, Logé C, Graton J, Le Questel J.-Y, Besson T. Org. Biomol. Chem. 2012; 20: 4916
    • 27b Loidreau Y, Besson T. Tetrahedron 2011; 67: 4852
  • 28 Makosza M, Bialecki M. J. Org. Chem. 1998; 63: 4878