Synlett 2016; 27(17): 2467-2472
DOI: 10.1055/s-0035-1562479
letter
© Georg Thieme Verlag Stuttgart · New York

Rapid Protium–Deuterium Exchange of 4-Aminopyridines in Neutral D2O under Microwave Irradiation

Mark C. Bagley*
Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex, BN1 9QJ, UK   Email: m.c.bagley@sussex.ac.uk
,
Ayed Alnomsy
Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex, BN1 9QJ, UK   Email: m.c.bagley@sussex.ac.uk
,
Hussein I. Sharhan
Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex, BN1 9QJ, UK   Email: m.c.bagley@sussex.ac.uk
› Author Affiliations
Further Information

Publication History

Received: 11 May 2016

Accepted after revision: 25 June 2016

Publication Date:
03 August 2016 (online)


Abstract

4-Aminopyridines undergo surprisingly rapid and highly selective H/D exchange at C-2 and C-6 in neutral D2O upon microwave irradiation at only 190 °C for two hours in a sealed vessel. This method contrasts and complements acid-mediated H/D exchange, requires no catalyst, and is appropriate for the synthesis of deuterium isotopologues of N- and C-substituted 4-aminopyridines and a benzofused (quinoline) analogue.

Supporting Information

 
  • References and Notes

  • 1 Junk T, Catallo WJ. Chem. Soc. Rev. 1997; 26: 401
  • 2 Atzrodt J, Derdau V, Fey T, Zimmermann J. Angew. Chem. Int. Ed. 2007; 46: 7744
  • 3 Blom K, Schuhardt J, Munson B. Anal. Chem. 1985; 57: 1986
  • 4 Buteau KC. J. High Tech. L. 2009; 10: 22
  • 5 Hanson JR In The Organic Chemistry of Isotopic Labelling . The Royal Society of Chemistry; Cambridge: 2011
  • 6 Thomas AF In Deuterium Labeling in Organic Chemistry . Appleton-Century-Crofts, Educational Div., Meredith Corp; New York: 1972
  • 7 Murray AIII, Williams DL In Organic Synthesis with Isotopes. Part II: Organic Compounds Labeled with Isotopes of the Halogens, Hydrogen, Nitrogen, Oxygen, Phosphorus and Sulfur. Interscience Publishers; New York: 1958
  • 8 Hvidt A, Nielsen SO. Adv. Protein Chem. 1966; 21: 287

    • For recent reviews, see:
    • 9a Percy AJ, Rey M, Burns KM, Schriemer DC. Anal. Chim. Acta 2012; 721: 7
    • 9b Majumdar R, Middaugh CR, Weis DD, Volkin DB. J. Pharm. Sci. 2015; 104: 327
  • 10 Lockley WJ. S. J. Labelled Compd. Radiopharm. 2007; 50: 256
  • 11 Elander N, Jones JR, Lu S.-Y, Stone-Elander S. Chem. Soc. Rev. 2000; 29: 239
  • 12 Garnett JL. Catal. Rev. 1971; 5: 229
  • 13 Labinger JA, Bercaw JE. Nature (London, U.K.) 2002; 417: 507

    • The area has been reviewed recently (ref. 2 and 5). Notable examples of acid-mediated methods include:
    • 14a Vaidyanathan S, Surber BW. Tetrahedron Lett. 2005; 46: 5195
    • 14b Fodor-Csorba K, Galli G, Holly S, Gács-Baitz E. Tetrahedron Lett. 2002; 43: 3789
    • 14c Boix C, Poliakoff M. Tetrahedron Lett. 1999; 40: 4433
    • 14d Lockley WJ. S. Tetrahedron Lett. 1982; 23: 3819

    • Notable examples of metal-mediated methods include:
    • 14e Sajiki H, Ito N, Esaki H, Maesawa T, Maegawa T, Hirota K. Tetrahedron Lett. 2005; 46: 6995
    • 14f Derdau V, Atzrodt J, Zimmermann J, Kroll C, Brückner F. Chem. Eur. J. 2009; 15: 10397
    • 14g Sajiki H, Aoki F, Esaki H, Maegawa T, Hirota K. Org. Lett. 2004; 6: 1485
    • 14h Cioffi EA, Bell RH, Le B. Tetrahedron: Asymmetry 2005; 16: 471
    • 14i Cioffi EA. Tetrahedron Lett. 1996; 37: 6231
    • 14j Cioffi EA, Alston KE, Patel AM. Tetrahedron Lett. 2002; 43: 8985
    • 14k Sawama Y, Yamada T, Yabe Y, Morita K, Shibata K, Shigetsura M, Monguchi Y, Sajiki H. Adv. Synth. Catal. 2013; 355: 1529
    • 14l Maegawa T, Fujiwara Y, Inagaki Y, Esaki H, Monguchi Y, Sajiki H. Angew. Chem. Int. Ed. 2008; 47: 5394
    • 14m Derdau V, Atzrodt J. Synlett 2006; 1918
    • 14n Hardacre C, Holbrey JD, Jane McMath SE. Chem. Commun. 2001; 367
  • 15 Edlund U, Bergson G. Acta Chem. Scand. 1971; 25: 3625
  • 16 Werstiuk NH, Ju C. Can. J. Chem. 1989; 67: 5
  • 17 Junk T, Catallo WJ. Tetrahedron Lett. 1996; 37: 3445

    • For Zoltewicz’s original studies, see:
    • 18a Zoltewicz JA, Smith CL. J. Am. Chem. Soc. 1967; 89: 3358
    • 18b Zoltewicz JA, Kauffman GM, Smith CL. J. Am. Chem. Soc. 1968; 90: 5939
    • 18c Zoltewicz JA, Kauffman GM. J. Org. Chem. 1969; 34: 1405
    • 18d Zoltewicz JA, Helmick LS. J. Am. Chem. Soc. 1970; 92: 7547
    • 18e Zoltewicz JA, Kandetzki PE. J. Am. Chem. Soc. 1971; 93: 6562
  • 19 Kebede N, Pavlik JW. J. Heterocycl. Chem. 1997; 34: 685
  • 20 Sullivan JA, Flanagan KA, Hain H. Catal. Today 2008; 139: 154
  • 21 Guy KA, Shapley JR. Organometallics 2009; 28: 4020
  • 22 Beringhelli T, Carlucci L, D’Alfonso G, Ciani G, Proserpio DM. J. Organomet. Chem. 1995; 504: 15
  • 23 Prechtl MH. G, Hölscher M, Ben-David Y, Theyssen N, Loschen R, Milstein D, Leitner W. Angew. Chem. Int. Ed. 2007; 46: 2269
  • 24 Eguillor B, Esteruelas MA, García-Raboso J, Oliván M, Oñate E. Organometallics 2009; 28: 3700
  • 25 Piola L, Fernández-Salas J, Manzini S, Nolan SP. Org. Biomol. Chem. 2014; 12: 8683
  • 26 McAuley B, Hickey MJ, Kingston LP, Jones JR, Lockley WJ. S, Mather AN, Spink E, Thompson SP, Wilkinson DJ. J. Labelled Compd. Radiopharm. 2003; 46: 1191
  • 27 Esaki H, Ito N, Sakai S, Maegawa T, Monguchi Y, Sajiki H. Tetrahedron 2006; 62: 10954
  • 28 Alexakis E, Jones JR, Lockley WJ. S. Tetrahedron Lett. 2006; 47: 5025
  • 29 General Procedure for H/D Exchange of 4-Aminopyridines A solution of the substrate in D2O (5 mL) was irradiated in a sealed Pyrex tube at 190 °C for 2 h (hold time) using a CEM Explorer microwave synthesizer (maximum pressure 150 psi) by moderation of the initial microwave power (300 W). The mixture was cooled in a stream of compressed air and extracted with CH2Cl2 (3 × 10 mL). The organic extracts were combined, dried (MgSO4), filtered, and evaporated in vacuo.
    • 30a Barlin GB, Pfleiderer W. J. Chem. Soc. B 1971; 1425
    • 30b Collot A.-G, Courtney M, Coyne D, Eustace SE, More O’Ferrall RA. J. Org. Chem. 2009; 74: 3356
  • 31 See Supporting Information for detailed experimental procedures and characterization data. 4-Aminopyridine-d 2 (8a) Compd 8a was prepared as a colorless solid; mp 157 °C. IR (neat): 3433, 3144, 3036, 2967, 2262, 1686, 1616, 1583, 1519, 1368, 1299, 1279, 1005, 891, 756 cm–1. 1H NMR (500 MHz, CD3OD): δ = 7.95 (0.04 H, d, J = 5 Hz, 2,6-H), 6.55 (1 H, s, 3,5-H). 13C NMR (125 MHz, CD3OD): δ = 155.3 (s, C-N), 148.4 (s, CH isotopologue), 148.1 (tD, J = 26 Hz, CD), 108.9 (s, CH). MS (EI): m/z (%) = 96 (100) [M•+], 69 (25), 41 (35). 4-(Methylamino)pyridine-d 2 (10a) Compd 10a was prepared as a colorless solid; mp 125 °C. IR (neat): 3396, 3323, 3269, 3030, 2497, 2402, 2232, 1909, 1635, 1564, 1460, 1301, 1250, 1153, 1042, 914 cm–1. 1H NMR (500 MHz, CD3OD): δ = 7.99 (0.04 H, d, J = 7 Hz, 2,6-H), 6.51 (1.56 H, s, 3,5-H), 2.80 (3 H, s, Me). 13C NMR (125 MHz, CD3OD): δ = 155.5 (s, CN), 147.9 (tD, J = 27 Hz, CD), 106.7 (s, CH), 27.8 (s, Me). MS (EI): m/z (%) = 111 (52), 110 (100) [M•+], 109 (69). 4-(Dimethylamino)pyridine-d 2 (11a) Compd 11a (300 mg, 2.45 mmol) was prepared as a colorless solid; mp 113–114 °C. IR (neat): 3286, 3250, 3179, 3045, 2922, 2819, 2236, 1579, 1498, 1350,1308, 1225, 1068, 993, 750 cm–1. 1H NMR (500 MHz, CD3OD): δ = 8.06 (0.07 H, m, 2,6-H), 6.63 (1.88 H, s, 3,5-H), 3.03 (6 H, s, 2Me). 13C NMR (125 MHz, CD3OD): δ = 155.0 (s, CN), 147.7 (tD, J = 25 Hz, CD), 106.3 (s, CH), 37.7 (s, Me). MS (EI): m/z (%) = 124 (86) [M•+], 123 (100), 107 (6), 96 (24), 80 (54), 52 (81), 42 (42). HRMS: m/z [M + H] calcd for C7H8D2N2: 125.1042; found: 125.1043. 4-Pyrrolidinopyridine-d 2 (12a) Compd 12a (300 mg, 2.02 mmol) was prepared as a colorless solid; mp 59 °C. IR (neat): 3074, 2961, 2910, 2845, 2230, 1583, 1532, 1478, 1361, 1286, 1246, 1154, 997, 700 cm–1. 1H NMR (500 MHz, CDCl3): δ = 8.20 (0.10 H, d, J = 5 Hz, 2,6-H), 6.36 (1.82 H, s, 3,5-H), 3.29 (4 H, t, J = 6 Hz, 2′,5′-H), 2.02 (4 H, t, J = 6 Hz, 3′,4′-H). 13C NMR (125 MHz, CD3OD): δ = 152.4 (s, CN), 147.5 (tD, J = 27 Hz, CD), 106.7 (s, CH), 46.7 (s, CH2), 24.8 (s, CH2). MS (EI): m/z (%) = 150 (85) [M•+], 149 (100), 121 (15). HRMS: m/z [M + H] calcd for C9H10D2N2: 151.1199; found: 151.1199. 4-Aminoquinoline-d 1 (13a) Compd 13a was prepared as an orange solid; mp 155 °C. IR (neat): 3443, 2968, 1683, 1528, 1475, 1339, 1316, 1245, 1009, 917, 751 cm–1. 1H NMR (500 MHz, CD3OD): δ = 8.25 (0.11 H, s, 2-H), 8.06 (0.91 H, d, J = 8 Hz, 5- or 8-H), 7.81 (0.91 H, d, J = 8 Hz, 5- or 8-H), 7.64 (1 H, t, J = 8 Hz, 6- or 7-H) 7.43 (1 H, t, J = 8 Hz, 6- or 7-H), 6.62 (0.77 H, s, 3-H). 13C NMR (125 MHz, CD3OD): δ = 152.6 (s, CN), 149.2 (tD, J = 26 Hz, CD), 147.9 (s, CN), 129.2 (s, CH), 127.4 (s, CH), 124.0 (s, CH), 121.4 (s, CH), 118.6 (s, C), 102.2 (s, CH). MS (EI): m/z (%) = 145 (100) [M•+], 144 (15), 118 (13). HRMS: m/z [M + H] calcd for C9H7DN2: 146.0823; found: 146.0824. 4-Amino-3-methylpyridine-d 2 (14a) Compd 14a was prepared as a colorless solid; mp 106 °C. IR (neat): 3345, 3311, 3164, 2536, 2404, 2367, 2288, 2237, 2194, 1631, 1553, 1436, 1264, 1197, 1042, 877 cm–1. 1H NMR (500 MHz, CD3OD): δ = 7.87 (0.06 H, s, 2-H), 7.71 (0.07 H, d, J = 7 Hz, 6-H), 6.57 (0.92 H, s, 5-H), 2.08 (2.96 H, s, Me). 13C NMR (125 MHz, CD3OD): δ = 153.5 (s, CN), 148.3 (s, CH isotopologue), 146.4 (s, CH isotopologue), 146.1 (tD, J = 25 Hz, CD), 116.7 (s, CC), 108.3 (s, CH), 12.7 (s, Me). MS (EI): m/z (%) = 110 (100) [M•+], 109 (33), 81 (29). 4-Amino-2-methylpyridine-d 4 (15a) Compd 15a was prepared as a colorless solid; mp 98 °C. IR (neat): 3324, 3065, 2911, 2848, 2366, 1638, 1602, 1559, 1495, 1345, 1297, 1261, 985, 705 cm–1. 1H NMR (500 MHz; CD3OD): δ = 7.84 (0.04 H, d, J = 6 Hz, 6-H), 6.43 (0.95 H, d, J = 2 Hz, 3-H), 6.39 (0.92 H, d, J = 2 Hz, 5-H), 2.27 (0.08 H, m, 1′-H). 13C NMR (125 MHz, CD3OD): δ = 157.3 (s, CN), 155.7 (s, CC), 147.5 (tD, J = 26 Hz, CD), 108.0 (s, CH), 106.6 (s, CH), 21.4 (septD, J = 19 Hz, CD3). MS (EI): m/z = 112 (%) [M•+], 111 (22), 110 (11), 83 (22), 69 (23), 41 (25). 4-Amino-3-bromopyridine-d 1 (16a) Compd 16a was prepared as an orange solid; mp 70 °C. IR (neat): 3448, 3149, 2925, 2536, 2156, 1707, 1628, 1589, 1502, 1419, 1339, 1270, 1184, 1074, 1013, 823 cm–1. 1H NMR (500 MHz, CD3OD): δ = 8.20 (0.02 H, s, 2-H), 7.90 (0.66 H, d, J = 6 Hz, 6-H), 6.70 (0.83 H, d, J = 6 Hz, 5-H). 13C NMR (125 MHz, CD3OD): δ = 152.3 (s, CN), 149.6 (tD, J = 27 Hz, CD), 147.0 (s, CH), 109.5 (s, CH), 105.4 (s, C). MS (EI): m/z (%) = 174 (60) [M•+], 94 (30), 67 (29). 4-Amino-3-iodopyridine-d 2 (17a) Compd 17a was prepared as an orange oil; mp 99 °C. IR (neat): 3421, 3294, 3038, 1639, 1581, 1491, 1412, 1337, 1267, 1185, 820, 725 cm–1. 1H NMR (500 MHz, CD3OD): δ = 8.38 (0.01 H, s, 2-H), 7.92 (0.25 H, d, J = 6 Hz, 6-H), 6.68 (0.75 H, s, 5-H). 13C NMR (125 MHz, CD3OD): δ = 155.4 (tD, J = 28 Hz, CD), 154.8 (s, CN), 147.7 (s, CH), 108.7 (s, CH), 79.8 (s, C). MS (EI): m/z (%) = 222 (100) [M•+], 221 (30) 127 (15), 95 (23), 67 (22), 40 (20).
  • 32 Di Giuseppe A, Castarlenas R, Oro LA. C. R. Chim. 2015; 18: 713