Synthesis 2016; 48(18): 2997-3016
DOI: 10.1055/s-0035-1562441
short review
© Georg Thieme Verlag Stuttgart · New York

Recent Progress in Memory Of Chirality (MOC): An Advanced Chiral Pool

Valérie Alezra*
a  Université Paris-Sud, ICMMO, UMR 8182, CNRS, Université Paris-Saclay, Equipe Méthodologie, Synthèse, et Molécules Thérapeutiques, Bât 410, Orsay 91405, France   Email: [email protected]
,
Takeo Kawabata*
b  Institute for Chemical Research, Kyoto University, Uji, Kyoto 111-0011, Japan   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 11 May 2016

Accepted: 19 May 2016

Publication Date:
07 July 2016 (online)


Abstract

This review describes the recent advances in asymmetric reactions based on memory of chirality. The memory of chirality is a unique concept concerning an advanced type of chiral pool-based asymmetric synthesis, in which reactions take place at the sole stereogenic center of the starting materials. The original sp3 chirality of the starting material is retained as dynamic sp2 chirality in the intermediate, and then transferred to sp3 chirality of the product. These asymmetric reactions were found to proceed through various types of chiral intermediates with dynamic nature. This review describes the phenomena of memory of chirality observed in asymmetric reactions proceeding through radical, cationic, and anionic intermediates.

1 Introduction

2 Memory of Chirality Proceeding through Radical Intermediates

3 Memory of Chirality Proceeding through Cationic Intermediates

4 Memory of Chirality Proceeding through Anionic Intermediates

5 Conclusion

 
  • References

  • 1 Seebach D, Naef R. Helv. Chim. Acta 1981; 64: 2704
  • 2 Seebach D, Boes M, Naef R, Schweizer WB. J. Am. Chem. Soc. 1983; 105: 5390
  • 3 Seebach D, Sting AR, Hoffmann M. Angew. Chem., Int. Ed. Engl. 1996; 35: 2708
  • 4 A similar method for asymmetric alkylation of amino acid derivatives via diastereomeric chiral oxazaborolidinone intermediates constructed from the parent amino acids have been reported, see: Vedejs E, Fields SC, Schrimpf MR. J. Am. Chem. Soc. 1993; 115: 11612
  • 5 Kawabata T, Suzuki H, Nagae Y, Fuji K. Angew. Chem. Int. Ed. 2000; 39: 2155
  • 6 Prior to the development of asymmetric alkylation of amino acid derivatives in reference 5, asymmetric alkylation of chiral ketones has been developed based on the similar concept, see: Kawabata T, Yahiro K, Fuji K. J. Am. Chem. Soc. 1991; 113: 9694
  • 7 Direct asymmetric alkylation of amino acid derivatives in the absence of the external chiral sources was reported for the first time by Seebach, although the intermediary chiral species responsible for the asymmetric induction was not identified, see: Seebach D, Wasmuth D. Angew. Chem., Int. Ed. Engl. 1981; 20: 971
  • 8 Asymmetric cyclization of amino acid derivatives via an axially chiral enolate intermediate has been reported, see: Beagley B, Betts MJ, Pritchard RG, Schofield A, Stoodley RJ, Vohra S. J. Chem. Soc., Chem. Commun. 1991; 924
  • 9 Asymmetric α-halogenation of chiral ketones has been reported, see: Ronteix MJ, Marquet A. Tetrahedron Lett. 1966; 7: 5801
  • 10 Asymmetric alkylation of benzodiazepine derivatives has been reported, see: Carlier PR, Zhao H, MacQuarrie-Hunter SL, DeGuzman JC, Hsu DC. J. Am. Chem. Soc. 2006; 128: 15215
  • 11 Fuji K, Kawabata T. Chem. Eur. J. 1998; 4: 373
  • 12 Kawabata T, Fuji K. Top. Stereochem. 2003; 23: 175
  • 13 Cozzi F, Siegel JS. Org. Biomol. Chem. 2005; 3: 4296
  • 14 Abe M, Nojima M. Kokagaku 2000; 31: 28
  • 15 Zhao H, Hsu DC, Carlier PR. Synthesis 2005; 1
  • 16 Carlier PR, Hsu DC, Antolak Bryson S. Top. Stereochem. 2010; 26: 53
  • 17 Patil NT. Chem. Asian J. 2012; 7: 2186
  • 18 Campolo D, Gastaldi S, Roussel C, Bertrand MP, Nechab M. Chem. Soc. Rev. 2013; 42: 8434
  • 19 Capriati V In Contemporary Carbene Chemistry . Moss RA, Doyle MP. John Wiley & Sons; New York: 2013: 325
  • 20 Schmalz H.-G, de Koning CB, Bernicke D, Siegel S, Pfletschinger A. Angew. Chem. Int. Ed. 1999; 38: 1620
  • 21 Giese B, Wettstein P, Stähelin C, Barbosa F, Neuburger M, Zehnder M, Wessig P. Angew. Chem. Int. Ed. 1999; 38: 2586
  • 22 Nechab M, Campolo D, Maury J, Perfetti P, Vanthuyne N, Siri D, Bertrand MP. J. Am. Chem. Soc. 2010; 132: 14742
  • 23 Nechab M, Besson E, Campolo D, Perfetti P, Vanthuyne N, Bloch E, Denoyel R, Bertrand MP. Chem. Commun. 2011; 47: 5286
  • 24 Campolo D, Gaudel-Siri A, Mondal S, Siri D, Besson E, Vanthuyne N, Nechab M, Bertrand MP. J. Org. Chem. 2012; 77: 2773
  • 25 Mondal S, Nechab M, Campolo D, Vanthuyne N, Bertrand MP. Adv. Synth. Catal. 2012; 354: 1987
  • 26 Mondal S, Nechab M, Vanthuyne N, Bertrand MP. Chem. Commun. 2012; 48: 2549
  • 27 Mondal S, Naubron J.-V, Campolo D, Giorgi M, Bertrand MP, Nechab M. Chirality 2013; 25: 832
  • 28 Gaudel-Siri A, Campolo D, Mondal S, Nechab M, Siri D, Bertrand MP. J. Org. Chem. 2014; 79: 9086
  • 29 Resendiz MJ. E, Family F, Fuller K, Campos LM, Khan SI, Lebedeva NV, Forbes MD. E, Garcia-Garibay MA. J. Am. Chem. Soc. 2009; 131: 8425
  • 30 Griesbeck AG, Kramer W, Lex J. Angew. Chem. Int. Ed. 2001; 40: 577
  • 31 Liu C.-E, Han Q, Ma N, Geng Z.-S, Zhang R.-H, Jiang Z.-Q. Tetrahedron Lett. 2013; 54: 541
  • 32 Šumanovac Ramljak T, Sohora M, Antol I, Kontrec D, Basarić N, Mlinarić-Majerski K. Tetrahedron Lett. 2014; 55: 4078
  • 33 Sasmal A, Taniguchi T, Wipf P, Curran DP. Can. J. Chem. 2013; 91: 1
  • 34 Matsumura Y, Shirakawa Y, Satoh Y, Umino M, Tanaka T, Maki T, Onomura O. Org. Lett. 2000; 2: 1689
  • 35 Ng’ang’a Wanyoik G, Onomura O, Maki T, Matsumura Y. Org. Lett. 2002; 4: 1875
  • 36 Onomura O, Matsumura Y, Ng’aNg’a Wanyoike G. Heterocycles 2009; 79: 339
  • 37 Onomura O, Ng’aNg’a Wanyoike G, Matsumura Y, Kuriyama M. Heterocycles 2010; 80: 1177
  • 38 Dubé P, Toste FD. J. Am. Chem. Soc. 2006; 128: 12062
  • 39 Faza ON, López CS, de Lera AR. J. Org. Chem. 2011; 76: 3791
  • 40 Nakamura I, Sato T, Terada M, Yamamoto Y. Org. Lett. 2008; 10: 2649
  • 41 Nokami T, Yamane Y, Oshitani S, Kobayashi J, Matsui S, Nishihara T, Uno H, Hayase S, Itoh T. Org. Lett. 2015; 17: 3182
  • 42 Valerio V, Madelaine C, Maulide N. Chem. Eur. J. 2011; 17: 4742
  • 43 Kawabata T, Wirth T, Yahiro K, Suzuki H, Fuji K. J. Am. Chem. Soc. 1994; 116: 10809
  • 44 Kawabata T, Kawakami S, Majumdar S. J. Am. Chem. Soc. 2003; 125: 13012
  • 45 Kawabata T, Matsuda S, Kawakami S, Monguchi D, Moriyama K. J. Am. Chem. Soc. 2006; 128: 15394
  • 46 Kawabata T, Moriyama K, Kawakami S, Tsubaki K. J. Am. Chem. Soc. 2008; 130: 4153
  • 47 Teraoka F, Fuji K, Ozturk O, Yoshimura T, Kawabata T. Synlett 2011; 543
  • 48 Brewster AG, Frampton CS, Mitchell MB, Jayatissa J, Stoodley RJ, Vohra S. Chem. Commun. 1998; 299
  • 49 Brewster AG, Jayatissa J, Mitchell MB, Schofield A, Stoodley RJ. Tetrahedron Lett. 2002; 43: 3919
  • 50 Watanabe H, Yoshimura T, Kawakami S, Sasamori T, Tokitoh N, Kawabata T. Chem. Commun. 2012; 48: 5346
  • 51 Kawabata T, Majumdar S, Tsubaki K, Monguchi D. Org. Biomol. Chem. 2005; 3: 1609
  • 52 Kawabata T, Monguchi D, Yoshimura T, Irie K, Hayashi K, Sasamori T, Tokitoh N. Heterocycles 2012; 86: 1483
  • 53 Yoshimura T, Takuwa M, Tomohara K, Uyama M, Hayashi K, Yang P, Hyakutake R, Sasamori T, Tokitoh N, Kawabata T. Chem. Eur. J. 2012; 18: 15330
  • 54 Yoshimura T, Kinoshita T, Yoshioka H, Kawabata T. Org. Lett. 2013; 15: 864
  • 55 Tomohara K, Yoshimura T, Hyakutake R, Yang P, Kawabata T. J. Am. Chem. Soc. 2013; 135: 13294
  • 56 Yoshimura T, Tomohara K, Kawabata T. J. Am. Chem. Soc. 2013; 135: 7102
  • 57 Tomohara K, Kasamatsu K, Yoshimura T, Furuta T, Kawabata T. Chem. Pharm. Bull. 2016; 64: in press ; DOI: 10.1248/cpb.c16-00272
  • 58 Hsu DC, Lam PC.-H, Slebodnick C, Carlier PR. J. Am. Chem. Soc. 2009; 131: 18168
  • 59 Carlier PR, Zhao H, DeGuzman J, Lam PC.-H. J. Am. Chem. Soc. 2003; 125: 11482
  • 60 Farran D, Archirel P, Toupet L, Martinez J, Dewynter G. Eur. J. Org. Chem. 2011; 2043
  • 61 Antolak SA, Yao Z.-K, Richoux GM, Slebodnick C, Carlier PR. Org. Lett. 2014; 16: 5204
  • 62 Branca M, Gori D, Guillot R, Alezra V, Kouklovsky C. J. Am. Chem. Soc. 2008; 130: 5864
  • 63 Branca M, Pena S, Guillot R, Gori D, Alezra V, Kouklovsky C. J. Am. Chem. Soc. 2009; 131: 10711
  • 64 Branca M, Alezra V, Kouklovsky C, Archirel P. Tetrahedron 2008; 64: 1743
  • 65 Mai TT, Viswambharan B, Gori D, Kouklovsky C, Alezra V. J. Org. Chem. 2012; 77: 8797
  • 66 Viswambharan B, Gori D, Guillot R, Kouklovsky C, Alezra V. Org. Lett. 2014; 16: 788
  • 67 Ghorai MK, Ghosh K, Yadav AK. Tetrahedron Lett. 2009; 50: 476
  • 68 Ghorai MK, Ghosh K, Yadav AK, Nanaji Y, Halder S, Sayyad M. J. Org. Chem. 2013; 78: 2311
  • 69 Lupi V, Penso M, Foschi F, Gassa F, Mihali V, Tagliabue A. Chem. Commun. 2009; 5012
  • 70 Foschi F, Landini D, Lupi V, Mihali V, Penso M, Pilati T, Tagliabue A. Chem. Eur. J. 2010; 16: 10667
  • 71 Foschi F, Tagliabue A, Mihali V, Pilati T, Pecnikaj I, Penso M. Org. Lett. 2013; 15: 3686
  • 72 Tayama E, Igarashi T, Iwamoto H, Hasegawa E. Org. Biomol. Chem. 2012; 10: 339
  • 73 Tayama E, Naganuma N, Iwamoto H, Hasegawa E. Chem. Commun. 2014; 50: 6860
  • 74 Kim JH, Lee S, Kim S. Angew. Chem. Int. Ed. 2015; 54: 10875
  • 75 Hicks F, Hou Y, Langston M, McCarron A, O’Brien E, Ito T, Ma C, Matthews C, O’Bryan C, Provencal D, Zhao Y, Huang J, Yang Q, Heyang L, Johnson M, Sitang Y, Yuqiang L. Org. Process Res. Dev. 2013; 17: 829
  • 76 Fletcher SP, Solà J, Holt D, Brown RA, Clayden J. Beilstein J. Org. Chem. 2011; 7: 1304
  • 77 Solà J, Fletcher SP, Castellanos A, Clayden J. Angew. Chem. Int. Ed. 2010; 49: 6836
  • 78 Anxionnat B, Robert B, George P, Ricci G, Perrin M.-A, Gomez Pardo D, Cossy J. J. Org. Chem. 2012; 77: 6087
  • 79 Faza ON, López CS, Álvarez R, de Lera AR. J. Am. Chem. Soc. 2006; 128: 2434