Synlett 2016; 27(13): 1997-2002
DOI: 10.1055/s-0035-1561862
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Unsymmetrically Disubstituted Tetraphenylenes via Carbonyl-Directed C–H Functionalization

Shulei Pan
Department of Chemistry, and Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. of China   Email: zhangyanghui@tongji.edu.cn
,
Hang Jiang
Department of Chemistry, and Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. of China   Email: zhangyanghui@tongji.edu.cn
,
Yu Zhang
Department of Chemistry, and Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. of China   Email: zhangyanghui@tongji.edu.cn
,
Dushen Chen
Department of Chemistry, and Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. of China   Email: zhangyanghui@tongji.edu.cn
,
Yanghui Zhang*
Department of Chemistry, and Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. of China   Email: zhangyanghui@tongji.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 30 March 2016

Accepted after revision: 18 April 2016

Publication Date:
17 May 2016 (online)


Abstract

A new strategy for the synthesis of unsymmetrically disubstituted tetraphenylenes from 2-acetylbiphenylene has been developed via ruthenium-catalyzed C–H functionalization. Four reactions, including alkenylation–cyclization, alkenylation, alkylation, and amidation, were achieved. The reactions provide easy access to a variety of unsymmetrically disubstituted tetraphenylene derivatives, which could accelerate research on the appliation of tetraphenylenes.

Supporting Information

 
  • References and Notes

    • 1a Karle IL, Brockway LO. J. Am. Chem. Soc. 1944; 66: 1974
    • 1b Irngartinger H, Reibel WR. K. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1981; 37: 1724
    • 2a Huang H, Hau C.-K, Law CC. M, Wong HN. C. Org. Biomol. Chem. 2009; 7: 1249
    • 2b Han J.-W, Chen J.-X, Li X, Peng X.-S, Wong HN. C. Synlett 2013; 24: 2188
  • 3 Rajca A, Rajca S. Angew. Chem. Int. Ed. 2010; 49: 672
    • 4a Rashidi-Ranjbar P, Man Y.-M, Sandstrom J, Wong HN. C. J. Org. Chem. 1989; 54: 4888
    • 4b Huang H, Stewart T, Gutmann M, Ohhara T, Niimura N, Li Y.-X, Wen J.-F, Bau R, Wong HN. C. J. Org. Chem. 2009; 74: 359
    • 4c Bachrach SM. J. Org. Chem. 2009; 74: 3609
    • 5a Rajca A, Safronov A, Rajca S, Ross CR, Stezowski JJ. J. Am. Chem. Soc. 1996; 118: 7272
    • 5b Rajca A, Safronov A, Rajca S, Shoemaker R. Angew. Chem., Int. Ed. Engl. 1997; 36: 488
    • 5c Elliott EL, Orita A, Hasegawa D, Gantzel P, Otera J, Siegel JS. Org. Biomol. Chem. 2004; 3: 581
    • 5d Hisaki I, Sonoda M, Tobe Y. Eur. J. Org. Chem. 2006; 833
    • 5e Rajca A, Rajca S, Pink M, Miyasaka M. Synlett 2007; 1799
    • 5f Hau C.-K, Chui SS.-Y, Lu W, Che C.-M, Cheng P.-S, Mak TC. W, Miao Q, Wong HN. C. Chem. Sci. 2011; 2: 1068
    • 5g Xiong X.-D, Deng C.-L, Peng X.-S, Miao Q, Wong HN. C. Org. Lett. 2014; 16: 3252
    • 6a Tetraphenylene and Related Hosts. In Comprehensive Supramolecular Chemistry. Mak TC. W, Wong HN. C. Pergamon Press; Oxford: 1996
    • 6b Mak TC. W, Wong HN. C. Top. Curr. Chem. 1987; 140: 141
    • 6c Man Y.-M, Mak TC. W, Wong HN. C. J. Org. Chem. 1990; 55: 3214
    • 6d Yang X.-P, Du D.-M, Li Q, Mak TC. W, Wong HN. C. Chem. Commun. 1999; 1607
    • 6e Lai CW, Lam CK, Lee HK, Mak TC. W, Wong HN. C. Org. Lett. 2003; 5: 823
    • 6f Wen J.-F, Hong W, Yuan K, Mak TC. W, Wong HN. C. J. Org. Chem. 2003; 68: 8918
    • 6g Lin F, Peng H.-Y, Chen J.-X, Chik DT. W, Cai Z, Wong KM. C, Yam VW. W, Wong HN. C. J. Am. Chem. Soc. 2010; 132: 16383
    • 7a Peng H.-Y, Lam C.-K, Mak TC. W, Cai Z, Ma W.-T, Li Y.-X, Wong HN. C. J. Am. Chem. Soc. 2005; 127: 9603
    • 7b Wu A.-H, Hau C.-K, Wong HN. C. Adv. Synth. Catal. 2007; 349: 601
  • 8 Wang C, Xi Z. Chem. Commun. 2007; 5119
    • 9a Wittig G, Lehmann G. Chem. Ber. 1957; 90: 875
    • 9b Wittig G, Klar G. Liebigs Ann. Chem. 1967; 704: 91
    • 9c Hellwinkel D, Reiff G, Nykodym V. Liebigs Ann. Chem. 1977; 1013
    • 9d Rajca A, Safronov A, Rajca S, Wongsriratanakul J. J. Am. Chem. Soc. 2000; 122: 3351
    • 9e Kabir SM. H, Iyoda M. Synthesis 2000; 1839
    • 9f Kabir SM. H, Hasegawa M, Kuwatani Y, Yoshida M, Matsuyama H, Iyoda M. J. Chem. Soc., Perkin Trans. 1 2001; 159
    • 9g Rajca A, Wang H, Bolshov P, Rajca S. Tetrahedron 2001; 57: 3725
    • 10a Perthuisot C, Edelbach BL, Zubris DL, Simhai N, Iverson CN, Müller C, Satoh T, Jones WD. J. Mol. Catal. A: Chem. 2002; 189: 157
    • 10b Eisch JJ, Piotrowski AM, Han KI, Kruger C, Tsay YH. Organometallics 1985; 4: 224
    • 10c Schwager H, Spyroudis S, Vollhardt KP. C. J. Organomet. Chem. 1990; 382: 191
    • 10d Edelbach BL, Lachicotte RJ, Jones WD. J. Am. Chem. Soc. 1998; 120: 2843
    • 10e Simhai N, Iverson CN, Edelbach BL, Jones WD. Organometallics 2001; 20: 2759
    • 10f Beck R, Johnson SA. Chem. Commun. 2011; 47: 9233
    • 11a Lindow DF, Friedman L. J. Am. Chem. Soc. 1967; 89: 1271
    • 11b Friedman L, Lindow DF. J. Am. Chem. Soc. 1968; 90: 2324
    • 12a Xing Y.-D, Huang NZ. J. Org. Chem. 1982; 47: 140
    • 12b Wang X.-M, Hou X.-L, Zhou Z.-Y, Mak TC. W, Wong HN. C. J. Org. Chem. 1993; 58: 7498
    • 12c Song Q, Lebeis CW, Shen X, Ho DM, Pascal RA. Jr. J. Am. Chem. Soc. 2005; 127: 13732
  • 13 Rapson WS, Shuttleworth RG, van Niekerk JN. J. Chem. Soc. 1943; 326
  • 14 Figeys HP, Dralants A. Tetrahedron Lett. 1971; 42: 3901

    • Recent reviews on transition-metal-catalyzed C–H activation:
    • 15a C–H Activation. In Topics in Current Chemistry. Yu J.-Q, Shi Z. Springer; Berlin/Heidelberg: 2010
    • 15b Giri R, Shi B.-F, Engle KM, Maugel N, Yu J.-Q. Chem. Soc. Rev. 2009; 38: 3242
    • 15c Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
    • 15d Mkhalid IA. I, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010; 110: 890
    • 15e Ackermann L. Chem. Rev. 2011; 111: 1315
    • 15f Cho SH, Kim JY, Kwak J, Chang S. Chem. Soc. Rev. 2011; 40: 5068
    • 15g Rouquet G, Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726
    • 15h McMurray L, O'Hara F, Gaunt MJ. Chem. Soc. Rev. 2011; 40: 1885
    • 15i Boorman TC, Larrosa I. Chem. Soc. Rev. 2011; 40: 1910
    • 15j Sun C.-L, Li B.-J, Shi Z.-J. Chem. Rev. 2011; 111: 1293
    • 15k Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
    • 15l Kuhl N, Hopkinson MN, Wencel-Delord J, Glorius F. Angew. Chem. Int. Ed. 2012; 51: 10236
    • 15m Colby DA, Tsai AS, Bergman RG, Ellman JA. Acc. Chem. Res. 2012; 45: 814
    • 15n Neufeldt SR, Sanford MS. Acc. Chem. Res. 2012; 45: 936
    • 15o Song G, Wang F, Li X. Chem. Soc. Rev. 2012; 41: 3651
    • 15p Arockiam PB, Bruneau C, Dixneuf PH. Chem. Rev. 2012; 112: 5879
    • 15q Zheng Q.-Z, Jiao N. Tetrahedron Lett. 2014; 55: 1121
    • 15r Carbon–Carbon σ-Bond Formation via C–H Bond Functionalization. In Comprehensive Organic Synthesis. Zhang Y, Shi G, Yu J.-Q. Elsevier; Oxford: 2014. 2nd ed.

      Recent reviews on directed C–H activation:
    • 16a Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 16b Engle KM, Mei T.-S, Wasa M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
    • 16c Zhang M, Zhang Y, Jie X, Zhao H, Li G, Su W. Org. Chem. Front. 2014; 1: 843
    • 16d Shi G, Zhang Y. Adv. Synth. Catal. 2014; 356: 1419

      Reviews on the carbonyl-directed C–H functionalization:
    • 17a Huang Z, Lim HN, Mo F, Young MC, Dong G. Chem. Soc. Rev. 2015; 44: 7764
    • 17b Giri R, Thapa S, Kafle A. Adv. Synth. Catal. 2014; 356: 139
    • 17c Colby DA, Tsai AS, Bergman RG, Ellman JA. Acc. Chem. Res. 2012; 45: 814

      Ru-catalyzed:
    • 18a Chinnagolla RK, Jeganmohan M. Eur. J. Org. Chem. 2012; 417
    • 18b Harris PW. R, Rickard CE. F, Woodgate PD. J. Organomet. Chem. 1999; 589: 168

    • Rh-catalyzed:
    • 18c Muralirajan K, Parthasarathy K, Cheng C.-H. Angew. Chem. Int. Ed. 2011; 50: 4169
    • 18d Patureau FW, Besset T, Kuhl N, Glorius F. J. Am. Chem. Soc. 2011; 133: 2154

    • Ir-catalyzed:
    • 18e Tsuchikama K, Kasagawa M, Hashimoto Y.-K, Endo K, Shibata T. J. Organomet. Chem. 2008; 693: 3939
    • 18f Tsuchikama K, Kasagawa M, Endo K, Shibata T. Synlett 2010; 97
  • 19 For the detailed conditions optimization, see Supporting Information.

    • Ru-catalyzed:
    • 20a Padala K, Jeganmohan M. Org. Lett. 2011; 13: 6144

    • Rh-catalyzed:
    • 20b Patureau FW, Besset T, Glorius F. Angew. Chem. Int. Ed. 2011; 50: 1064
    • 20c Kathiravan S, Nicholls IA. Eur. J. Org. Chem. 2014; 721

      Ru-catalyzed:
    • 21a Murai S, Kakiuchi F, Sekine S, Tanaka T, Kamatani A, Sonoda M, Chatani N. Nature (London, U.K.) 1993; 366: 529
    • 21b Simon M.-O, Martinez R, Genêt J.-P, Darses S. Adv. Synth. Catal. 2009; 351: 153
    • 21c Martinez R, Genêt J.-P, Darses S. Chem. Commun. 2008; 3855
    • 21d Simon M.-O, Martinez R, Genêt J.-P, Darses S. J. Org. Chem. 2010; 75: 208
    • 21e Martinez R, Simon M.-O, Chevalier R, Pautigny C, Genêt J.-P, Darses S. J. Am. Chem. Soc. 2009; 131: 7887
    • 21f Martinez R, Chevalier R, Darses S, Genêt J.-P. Angew. Chem. Int. Ed. 2006; 45: 8232
    • 21g Simon M.-O, Genêt J.-P, Darses S. Org. Lett. 2010; 12: 3038
    • 21h Bettadapur KR, Lanke V, Prabhu KR. Org. Lett. 2015; 17: 4658
    • 21i Kakiuchi F, Kochi T, Mizushima E, Murai S. J. Am. Chem. Soc. 2010; 132: 17741
    • 21j Miura H, Wada K, Hosokawa S, Inoue M. ChemCatChem 2010; 2: 1223

    • Rh-catalyzed:
    • 21k Lenges CP, Brookhart M. J. Am. Chem. Soc. 1999; 121: 6616

    • Ir-catalyzed:
    • 21l Shirai T, Yamamoto Y. Angew. Chem. Int. Ed. 2015; 54: 9894

      Ru-catalyzed:
    • 22a Bhanuchandra M, Yadav MR, Rit RK, Kuram MR, Sahoo AK. Chem. Commun. 2013; 49: 5225
    • 22b Zheng Q.-Z, Liang Y.-F, Qin C, Jiao N. Chem. Commun. 2013; 49: 5654
    • 22c Kim J, Kim J, Chang S. Chem. Eur. J. 2013; 19: 7328

    • Ir-catalyzed:
    • 22d Kim J, Chang S. Angew. Chem. Int. Ed. 2014; 53: 2203
  • 23 Ru(II)-Catalyzed C–H Functionalization of 1a with 2a A 25 mL Schlenk-type tube (with a Teflon high-pressure valve and side arm) was charged with compound 1a (34.6 mg, 0.10 mmol), 2a (35.6 mg, 0.20 mmol), Cu(OAc)2·H2O (5.0 mg, 0.025 mmol), [RuCl2(p-cymene)]2 (6.1 mg, 0.01 mmol), AgSbF6 (13.7 mg, 0.04 mmol), and THF (1 mL). The reaction tube was evacuated and back-filled with N2 (3×, ballon). After the reaction mixture was stirred at 120 °C for 12 h, it was allowed to cool down to room temperature. The reaction mixture was diluted with EtOAc (20 mL), and then filtered through a pad of Celite. The filtrate was washed with brine (10 mL), dried over Na2SO4, and concentrated in vacuo. The residue was purified by silica gel preparative TLC to give the corresponding product 3a; yellow solid, 80% yield; mp 161–162 °C. 1H NMR (400 MHz, CDCl3): δ = 7.52 (s, 1 H), 7.31–7.13 (m, 23 H), 6.19 (s, 1 H), 5.69 (s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 147.19, 141.85, 141.80, 141.66, 141.62, 141.55, 141.52, 141.46, 139.15, 138.06, 135.18, 134.48, 134.30, 130.61, 129.39, 129.12, 129.09, 129.06, 128.99, 128.22, 128.01, 127.40, 127.29, 127.26, 127.21, 126.95, 120.86, 120.80, 114.44. HRMS (ESI-TOF): m/z calcd for C40H26Na+: 529.1927 [M + Na]+; found: 529.1926.
  • 24 Ru(II)-Catalyzed C–H Functionalization of 1a with 4a A 25 mL Schlenk-type tube (with a Teflon high-pressure valve and side arm) was charged with compound 1a (34.6 mg, 0.10 mmol), 4a (25.6 mg, 0.20 mmol), Cu(OAc)2·H2O (39.9 mg, 0.20 mmol), [RuCl2(p-cymene)]2 (6.1 mg, 0.01 mmol), AgSbF6 (13.7 mg, 0.04 mmol), and t-BuOH (1 mL). The reaction tube was evacuated and back-filled with N2 (3×, ballon). After the reaction mixture was stirred at 110 °C for 12 h, it was allowed to cool down to room temperature. The reaction mixture was diluted with EtOAc (20 mL), and then filtered through a pad of Celite. The filtrate was washed with brine (10 mL), dried over Na2SO4, and concentrated in vacuo. The residue was purified by silica gel preparative TLC to give the corresponding product 5a; white solid, 76% yield; mp 195–196 °C. 1H NMR (400 MHz, CDCl3): δ = 8.13 (d, J = 15.9 Hz, 1 H), 7.55 (s, 1 H), 7.42 (s, 1 H), 7.35–7.29 (m, 6 H), 7.21–7.14 (m, 6 H), 6.28 (d, J = 15.9 Hz, 1 H), 4.18 (t, J = 6.7 Hz, 2 H), 2.58 (s, 3 H), 1.70–1.16 (m, 2 H), 1.44–1.38 (m, 2 H), 0.94 (t, J = 7.4 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 200.38, 166.53, 145.43, 143.35, 142.85, 141.51, 141.28, 140.84, 140.78, 139.82, 139.78, 136.86, 133.84, 130.17, 129.36, 129.31, 129.26, 129.20, 129.16, 128.73, 128.63, 128.07, 128.02, 127.58, 127.54, 127.49, 127.46, 120.99, 64.38, 30.67, 29.14, 19.12, 13.69. HRMS (ESI-TOF): m/z calcd for C33H28O3Na+: 495.1931 [M + Na]+; found: 495.1925.
  • 25 Ru(II)-Catalyzed C–H Functionalization of 1a with 6a A 25 mL septum-capped vial equipped with a magnetic stir bar was charged with compound 1a (34.6 mg, 0.10 mmol), 6a (57.0 mg, 0.30 mmol), HCO2Na (13.6 mg, 0.20 mmol), [RuCl2(p-cymene)]2 (6.1 mg, 0.01 mmol), and P(p-CF3C6H4)3 (23.3 mg, 0.05 mmol). The vial was closed and evacuated under vacuum during 10 min and placed under an argon atmosphere. Degassed dioxane (1 mL) was added, and the reaction vial was evacuated and back-filled with Ar (3×, ballon). After the reaction mixture was stirred at 100 °C for 12 h, it was allowed to cool down to room temperature. The reaction mixture was diluted with EtOAc (20 mL), and then filtered through a pad of Celite. The filtrate was washed with brine (10 mL), dried over Na2SO4, and concentrated in vacuo. The residue was purified by silica gel preparative TLC to give the corresponding product 7a; amorphous, 99% yield. 1H NMR (400 MHz, CDCl3): δ = 7.45 (s, 1 H), 7.33–7.27 (m, 6 H), 7.20–7.14 (m, 6 H), 7.12 (s, 1 H), 3.80 (q, J = 7.0 Hz, 6 H), 3.04–2.85 (m, 2 H), 2.54 (s, 3 H), 1.20 (t, J = 7.0 Hz, 9 H), 1.01–0.94 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 201.55, 144.82, 143.87, 141.62, 141.26, 141.19, 141.15, 140.59, 140.48, 139.02, 136.16, 131.53, 130.17, 129.32, 129.30, 129.22, 129.10, 128.87, 127.68, 127.58, 127.39, 127.32, 58.31, 29.75, 26.94, 18.28, 12.48. HRMS (ESI-TOF): m/z calcd for C34H36O4SiNa+: 559.2275 [M + Na]+; found: 559.2270.
  • 26 Ru(II)-Catalyzed C–H Functionalization of 1a with 8a A 25 mL Schlenk-type tube (with a Teflon high pressure valve and side arm) was charged with compound 1a (34.6 mg, 0.10 mmol), 8a (54.9 mg, 0.30 mmol), Cu(OAc)2·H2O (10.0 mg, 0.05 mmol), [RuCl2(p-cymene)]2 (6.1 mg, 0.01 mmol), AgSbF6 (13.7 mg, 0.04 mmol), and CHCl3 (1 mL). The reaction tube was evacuated and back-filled with N2 (3×, ballon). After the reaction mixture was stirred at 100 °C for 24 h, it was allowed to cool down to room temperature. The reaction mixture was diluted with EtOAc (20 mL), and then filtered through a pad of Celite. The filtrate was washed with brine (10 mL), dried over Na2SO4, and concentrated in vacuo. The residue was purified by silica gel preparative TLC to give the corresponding product 9a; white solid, 70% yield; mp 244–245 °C. 1H NMR (400 MHz, CDCl3): δ = 11.35 (s, 1 H), 7.72 (d, J = 7.4 Hz, 2 H), 7.56 (s, 1 H), 7.52 (s, 1 H), 7.49 (t, J = 7.5 Hz, 1 H), 7.37–7.26 (m, 8 H), 7.20–7.12 (m, 4 H), 7.09–7.07 (m, 1 H), 6.99–6.97 (m, 1 H), 2.46 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 201.99, 148.46, 141.74, 140.99, 140.90, 140.73, 139.74, 139.58, 139.11, 138.67, 136.64, 132.88, 132.32, 129.32, 129.26, 129.24, 129.00, 128.83, 128.80, 128.26, 128.22, 127.90, 127.51, 127.48, 127.47, 127.28, 121.55, 119.98, 28.08. HRMS (ESI-TOF): m/z calcd for C32H23 NO3SNa+: 524.1291 [M + Na]+; found: 524.1294.