Synlett 2016; 27(04): 581-585
DOI: 10.1055/s-0035-1561677
cluster
© Georg Thieme Verlag Stuttgart · New York

Study of Stereocontrolling Elements in Chiral Phosphoric Acid Catalyzed Addition Reaction of Vinylindoles with Azlactones

Kyohei Kanomata
a   Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
,
Masahiro Terada*
a   Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
b   Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan   Email: mterada@m.tohoku.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 21 October 2015

Accepted after revision: 19 January 2016

Publication Date:
04 February 2016 (online)


Abstract

DFT studies were carried out to clarify the reaction mechanism and the stereocontrolling elements in the addition reaction of vinylindoles with azlactones catalyzed by a chiral phosphoric acid. The results suggest that the reaction proceeds via a six-membered transition state that is composed of the vinyl group of vinylindole and the enol moiety of azlactone.

Supporting Information

 
  • References

  • 1 Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan.

    • For recent reviews, see:
    • 2a Bandini M, Melloni A, Tommasi S, Umani-Ronchi A. Synlett 2005; 1199
    • 2b Bandini M, Eichholzer A. Angew. Chem. Int. Ed. 2009; 48: 9608
    • 2c Bartoli G, Bencivenni G, Dalpozzo R. Chem. Soc. Rev. 2010; 39: 4449

      For selected reviews of asymmetric Friedel–Crafts reaction of indoles, see:
    • 3a You S.-L, Cai Q, Zeng M. Chem. Soc. Rev. 2009; 38: 2190
    • 3b Zeng M, You S.-L. Synlett 2010; 1289
    • 3c Bhadury PS, Pang J. Curr. Org. Chem. 2014; 18: 2108
  • 4 For a review of preparation of optically active indole derivatives via substitution reactions, see: Palmieri A, Petrini M, Shaikh RR. Org. Biomol. Chem. 2010; 8: 1259
  • 5 Terada M, Moriya K, Kanomata K, Sorimachi K. Angew. Chem. Int. Ed. 2011; 50: 12586

    • For selected reviews of chiral phosphoric acid catalysis, see:
    • 6a Akiyama T. Chem. Rev. 2007; 107: 5744
    • 6b Terada M. Synthesis 2010; 1929
    • 6c Zamfir A, Schenker S, Freund M, Tsogoeva SB. Org. Biomol. Chem. 2010; 8: 5262
    • 6d Akiyama T In Science of Synthesis, Asymmetric Organocatalysis 2, Brønsted Base and Acid Catalysts, and Additional Topics. Maruoka K. Georg Thieme Verlag KG; New York: 2012: 169
    • 6e Terada M, Momiyama N In Science of Synthesis, Asymmetric Organocatalysis 2, Brønsted Base and Acid Catalysts, and Additional Topics. Maruoka K. Georg Thieme Verlag KG; Stuttgart: 2012: 219
    • 6f Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047

    • For seminal studies, see:
    • 6g Akiyama T, Itoh J, Yokota K, Fuchibe K. Angew. Chem. Int. Ed. 2004; 43: 1566
    • 6h Uraguchi D, Terada M. J. Am. Chem. Soc. 2004; 126: 5356
  • 7 For a recent review of tryptophan-containing peptides, see: Santiveri CM, Jiménez MA. Biopolymers 2010; 94: 779

    • For recent examples of enantioselective synthesis of tryptophan derivatives, see:
    • 8a Sui Y, Liu L, Zhao J.-L, Wang D, Chen Y.-J. Tetrahedron 2007; 63: 5173
    • 8b Valdez SC, Leighton JL. J. Am. Chem. Soc. 2009; 131: 14638
    • 8c Cai C.-W, Zhu X.-L, Wu S, Zuo Z.-L, Yu L.-L, Qin D.-B, Liu Q.-Z, Jing L.-H. Eur. J. Org. Chem. 2013; 456

      For recent reviews of enantioselective synthesis of quaternary α-amino acids, see:
    • 9a Ohfune Y, Shinada T. Eur. J. Org. Chem. 2005; 5127
    • 9b Cativiela C, Díaz-de-Villegas MD. Tetrahedron: Asymmetry 2007; 18: 569
    • 9c Vogt H, Bräse S. Org. Biomol. Chem. 2007; 5: 406

      For reviews of azlactones in organic synthesis, see:
    • 10a Fisk JS, Mosey RA, Tepe JJ. Chem. Soc. Rev. 2007; 36: 1432
    • 10b Mosey RA, Fisk JS, Tepe JJ. Tetrahedron: Asymmetry 2008; 19: 2755
    • 10c Hewlett NM, Hupp CD, Tepe JJ. Synthesis 2009; 2825
    • 10d Alba A.-NR, Rios R. Chem. Asian J. 2011; 6: 720

      For the reactions of azlactones using chiral phosphoric acid catalysts, see:
    • 11a Terada M, Tanaka H, Sorimachi K. J. Am. Chem. Soc. 2009; 131: 3430
    • 11b Jiang J, Qing J, Gong L.-Z. Chem. Eur. J. 2009; 15: 7031
    • 11c Han Z.-Y, Guo R, Wang P.-S, Chen D.-F, Xiao H, Gong L.-Z. Tetrahedron Lett. 2011; 52: 5963

      For a review of computational studies of organocatalytic reactions, see:
    • 12a Cheong PH.-Y, Legault CY, Um JM, Çelebi-Ölçüm N, Houk KN. Chem. Rev. 2011; 111: 5042

    • For selected examples of computational studies of chiral phosphoric acid catalyzed reactions, see:
    • 12b Yamanaka M, Itoh J, Fuchibe K, Akiyama T. J. Am. Chem. Soc. 2007; 129: 6756
    • 12c Yamanaka M, Hirata T. J. Org. Chem. 2009; 74: 3266
    • 12d Shibata Y, Yamanaka M. J. Org. Chem. 2013; 78: 3731
    • 12e Kanomata K, Toda Y, Shibata Y, Yamanaka M, Tuzuki S, Gridnev ID, Terada M. Chem. Sci. 2014; 5: 3515
    • 12f Simón L, Goodman JM. J. Am. Chem. Soc. 2008; 130: 8741
    • 12g Simón L, Goodman JM. J. Org. Chem. 2011; 76: 1775
    • 12h Grayson MN, Pellegrinet SC, Goodman JM. J. Am. Chem. Soc. 2012; 134: 2716
    • 12i Grayson MN, Goodman JM. J. Am. Chem. Soc. 2013; 135: 6142
    • 12j Chen X.-H, Wei Q, Luo S.-W, Xiao H, Gong L.-Z. J. Am. Chem. Soc. 2009; 131: 13819
    • 12k Marcelli T, Hammar P, Himo F. Chem. Eur. J. 2008; 14: 8562
    • 12l Shi F.-Q, Song B.-A. Org. Biomol. Chem. 2009; 7: 1292
    • 12m Cai Q.-A, Zheng C, You S.-L. Angew. Chem. Int. Ed. 2010; 49: 8666
    • 12n Xu S, Wang Z, Li Y, Zhang X, Wang H, Ding K. Chem. Eur. J. 2010; 16: 3021
    • 12o Maity P, Pemberton RP, Tantillo DJ, Tambar UK. J. Am. Chem. Soc. 2013; 135: 16380
    • 12p Wang H, Jain P, Antilla JC, Houk KN. J. Org. Chem. 2013; 78: 1208
    • 12q Hong X, Küçük HB, Maji MS, Yang Y.-F, Rueping M, Houk KN. J. Am. Chem. Soc. 2014; 136: 13769
    • 12r Calleja J, González-Pérez AB, de Lera ÁR, Álvarez R, Fañanás FJ, Rodríguez F. Chem. Sci. 2014; 5: 996
  • 13 A mechanistic study of chiral phosphoric acid catalyzed reaction of vinyl ethers with azlactones11a was carried out. Kanomata, K.; Nagasawa, Y.; Shibata, Y.; Egawa, F.; Yamanaka, M.; Terada, M. manuscript in preparation.

    • The Conia-ene-type mechanism was also supported by the experimentally observed stereochemical outcome. See:
    • 14a Fisk JS, Tepe JJ. J. Am. Chem. Soc. 2007; 129: 3058
    • 14b Mosey RA, Fisk JS, Friebe TL, Tepe JJ. Org. Lett. 2008; 10: 825
  • 15 (E)-6 and (Z)-6 afforded corresponding product 7a with entirely different selectivity, albeit the reactivities of (E)-6 and (Z)-6 were quite poor compared with that of 2. See ref. 5 for details of experimental conditions.
  • 16 Relative and absolute configurations were determined by X-ray crystallographic analysis after derivatization of the product. See ref. 5 for details.
  • 17 See the Supporting Information for the structures and energies of TSa-rs and TSa-sr, leading to the formation of minor anti-5a.
  • 18 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam MJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision C.01. Gaussian Inc; Wallingford (CT, USA): 2010
    • 19a Becke AD. Phys. Rev. A: General Physics 1988; 38: 3098
    • 19b Lee C, Yang WT, Parr RG. Phys. Rev. B: Solid State 1988; 37: 785
    • 19c Cammi R, Mennucci B, Tomasi J. J. Phys. Chem. A 1999; 103: 9100
    • 19d Cammi R, Mennucci B, Tomasi J. J. Phys. Chem. A 2000; 104: 5631
    • 19e Cossi M, Rega N, Scalmani M, Barone V. J. Chem. Phys. 2001; 114: 5691
  • 20 3D representations were prepared using CYLview, see: Legault CY. CYLview, 1.0b. Université de Sherbrooke; Canada: 2009. http://www.cylview.org

    • Computational details of the distortion/interaction analysis are shown in the Supporting Information. For the original distortion/interaction analysis, see:
    • 21a Morokuma K, Kitaura K. Chemical Applications of Atomic and Molecular Electrostatic Potentials . Politzer P, Truhlar DG. Plenum; New York: 1981

    • For selected examples of studies using the distortion/interaction analysis, see:
    • 21b Ess DN, Houk KN. J. Am. Chem. Soc. 2007; 129: 10646
    • 21c Green AG, Liu P, Merlic CA, Houk KN. J. Am. Chem. Soc. 2014; 136: 4575
    • 21d Odagi M, Furukori K, Yamamoto Y, Sato M, Iida K, Yamanaka M, Nagasawa K. J. Am. Chem. Soc. 2015; 137: 1909
  • 22 The reaction conditions affording these results were not optimized in order to compare selectivities under identical conditions. See ref. 5 for details.
  • 23 These substituent effects are in sharp contrast to those in the reaction of vinyl ethers with azlactones. In the reaction of vinyl ethers with azlactones, the 3,5-dimethoxyphenyl group was the optimal substituent. See refs. 5 and 11a for details. See also: Lu G, Birman VB. Org. Lett. 2011; 13: 356
  • 24 See the Supporting Information for the structures of TSb-ss and TSb-rr.